10 resultados para collision avoidance
em Aston University Research Archive
Resumo:
The use of digital communication systems is increasing very rapidly. This is due to lower system implementation cost compared to analogue transmission and at the same time, the ease with which several types of data sources (data, digitised speech and video, etc.) can be mixed. The emergence of packet broadcast techniques as an efficient type of multiplexing, especially with the use of contention random multiple access protocols, has led to a wide-spread application of these distributed access protocols in local area networks (LANs) and a further extension of them to radio and mobile radio communication applications. In this research, a proposal for a modified version of the distributed access contention protocol which uses the packet broadcast switching technique has been achieved. The carrier sense multiple access with collision avoidance (CSMA/CA) is found to be the most appropriate protocol which has the ability to satisfy equally the operational requirements for local area networks as well as for radio and mobile radio applications. The suggested version of the protocol is designed in a way in which all desirable features of its precedents is maintained. However, all the shortcomings are eliminated and additional features have been added to strengthen its ability to work with radio and mobile radio channels. Operational performance evaluation of the protocol has been carried out for the two types of non-persistent and slotted non-persistent, through mathematical and simulation modelling of the protocol. The results obtained from the two modelling procedures validate the accuracy of both methods, which compares favourably with its precedent protocol CSMA/CD (with collision detection). A further extension of the protocol operation has been suggested to operate with multichannel systems. Two multichannel systems based on the CSMA/CA protocol for medium access are therefore proposed. These are; the dynamic multichannel system, which is based on two types of channel selection, the random choice (RC) and the idle choice (IC), and the sequential multichannel system. The latter has been proposed in order to supress the effect of the hidden terminal, which always represents a major problem with the usage of the contention random multiple access protocols with radio and mobile radio channels. Verification of their operation performance evaluation has been carried out using mathematical modelling for the dynamic system. However, simulation modelling has been chosen for the sequential system. Both systems are found to improve system operation and fault tolerance when compared to single channel operation.
Resumo:
One of the major drawbacks for mobile nodes in wireless networks is power management. Our goal is to evaluate the performance power control scheme to be used to reduce network congestion, improve quality of service and collision avoidance in vehicular network and road safety application. Some of the importance of power control (PC) are improving spatial reuse, and increasing network capacity in mobile wireless communications. In this simulation we have evaluated the performance of existing rate algorithms compared with context Aware Rate selection algorithm (ACARS) and also seen the performance of ACARS and how it can be applied to road safety, improve network control and power management. Result shows that ACARS is able to minimize the total transmit power in the presence of propagation processes and mobility of vehicles, by adapting to the fast varying channels conditions with the Path loss exponent values that was used for that environment which is shown in the network simulation parameter. Our results have shown that ACARS is a very robust algorithm which performs very well with the effect of propagation processes that is prone to every transmitted signal in mobile networks. © 2013 IEEE.
Resumo:
Jackson (2005) developed a hybrid model of personality and learning, known as the learning styles profiler (LSP) which was designed to span biological, socio-cognitive, and experiential research foci of personality and learning research. The hybrid model argues that functional and dysfunctional learning outcomes can be best understood in terms of how cognitions and experiences control, discipline, and re-express the biologically based scale of sensation-seeking. In two studies with part-time workers undertaking tertiary education (N=137 and 58), established models of approach and avoidance from each of the three different research foci were compared with Jackson's hybrid model in their predictiveness of leadership, work, and university outcomes using self-report and supervisor ratings. Results showed that the hybrid model was generally optimal and, as hypothesized, that goal orientation was a mediator of sensation-seeking on outcomes (work performance, university performance, leader behaviours, and counterproductive work behaviour). Our studies suggest that the hybrid model has considerable promise as a predictor of work and educational outcomes as well as dysfunctional outcomes.
Resumo:
The aim of this study was to determine the cues used to signal avoidance of difficult driving situations and to test the hypothesis that drivers with relatively poor high contrast visual acuity (HCVA) have fewer crashes than drivers with relatively poor normalised low contrast visual acuity (NLCVA). This is because those with poorer HCVA are well aware of their difficulties and avoid dangerous driving situations while those poorer NLCVA are often unaware of the extent of their problem. Age, self-reported situation avoidance and HCVA were collected during a practice based study of 690 drivers. Screening was also carried out on 7254 drivers at various venues, mainly motorway sites, throughout the UK. Age, self-reported situation avoidance and prior crash involvement were recorded and Titmus vision screeners were used to measure HCVA and NLCVA. Situation avoidance increased in reduced visibility conditions and was influenced by age and HCVA. Only half of the drivers used visual cues to signal situation avoidance and most of these drivers used high rather than low contrast cues. A statistical model designed to remove confounding interrelationships between variables showed, for drivers that did not report situation avoidance, that crash involvement decreased for drivers with below average HCVA and increased for those with below average NLCVA. These relationships accounted for less than 1% of the crash variance, so the hypothesis was not strongly supported. © 2002 The College of Optometrists.
Resumo:
Fluidized bed spray granulators (FBMG) are widely used in the process industry for particle size growth; a desirable feature in many products, such as granulated food and medical tablets. In this paper, the first in a series of four discussing the rate of various microscopic events occurring in FBMG, theoretical analysis coupled with CFD simulations have been used to predict granule–granule and droplet–granule collision time scales. The granule–granule collision time scale was derived from principles of kinetic theory of granular flow (KTGF). For the droplet–granule collisions, two limiting models were derived; one is for the case of fast droplet velocity, where the granule velocity is considerable lower than that of the droplet (ballistic model) and another for the case where the droplet is traveling with a velocity similar to the velocity of the granules. The hydrodynamic parameters used in the solution of the above models were obtained from the CFD predictions for a typical spray fluidized bed system. The granule–granule collision rate within an identified spray zone was found to fall approximately within the range of 10-2–10-3 s, while the droplet–granule collision was found to be much faster, however, slowing rapidly (exponentially) when moving away from the spray nozzle tip. Such information, together with the time scale analysis of droplet solidification and spreading, discussed in part II and III of this study, are useful for probability analysis of the various event occurring during a granulation process, which then lead to be better qualitative and, in part IV, quantitative prediction of the aggregation rate.
Resumo:
The research presented in this paper is part of an ongoing investigation into how best to support meaningful lab-based evaluations of mobile technologies. In our previous work, we developed a hazard avoidance system for use during lab evaluations [1]; in the work reported here, we further assess the impact of this system, specifically in terms of the effect of avoidance cue type on speech-based text entry tasks.
Resumo:
The aim of this study was to examine the contribution of a broad range of maternal feeding practices in predicting parental reports of food avoidance eating behaviours in young children, after controlling for child temperament, and maternal dietary restraint which have previously been associated with feeding problems. One hundred and four mothers of children aged between 3 and 6 years completed self report measures of their child's eating behaviour and temperament, maternal dietary restraint and child feeding practices. Maternal reports of food avoidance eating behaviours were associated with an emotional child temperament, high levels of maternal feeding control, using food for behaviour regulation and low encouragement of a balanced and varied food intake. Maternal feeding practices, predominantly pressure to eat, significantly predicted food avoidance eating behaviours after controlling for child emotionality and maternal dietary restraint. The significant contribution of maternal feeding practices, which are potentially modifiable behaviours, suggests that the feeding interactions of parents and their children should be targeted for intervention and the prevention of feeding difficulties during early childhood. Future research should continue to explore how a broader range of feeding practices, particular those that may be more adaptive, might influence child eating behaviour. © 2011 Elsevier Ltd.
Resumo:
The research presented in this paper is part of an ongoing investigation into how best to support meaningful lab-based evaluations of mobile technologies. In our previous work, we developed a hazard avoidance system for use during lab evaluations [1]; in the work reported here, we further assess the impact of this system, specifically in terms of the effect of avoidance cue type on speech-based text entry tasks.
Resumo:
We report for the first time, rogue waves generation in a mode-locked fiber laser that worked in multiple-soliton state in which hundreds of solitons occupied the whole laser cavity. Using real-time spatio-temporal intensity dynamics measurements, it is unveiled that nonlinear soliton collision accounts for the formation of rogue waves in this laser state. The nature of interactions between solitons are also discussed. Our observation may suggest similar formation mechanisms of rogue waves in other systems.