12 resultados para collagen type VI
em Aston University Research Archive
Resumo:
Collagen, type I, is a highly abundant natural protein material which has been cross-linked by a variety of methods including chemical agents, physical heating and UV irradiation with the aim of enhancing its physical characteristics such as mechanical strength, thermal stability, resistance to proteolytic breakdown, thus increasing its overall biocompatibility. However, in view of the toxicity of residual cross-linking agents, or impracticability at large scales, it would be more useful if the collagen could be cross-linked by a milder, efficient and more practical means by using enzymes as biological catalysts. We demonstrate that on treating native collagen type I (from bovine skin) with both tissue transglutaminase (TG2; tTG) and microbial transglutaminase (mTG; Streptoverticillium mobaraense) leads to an enhancement in cell attachment, spreading and proliferation of human osteoblasts (HOB) and human foreskin dermal fibroblasts (HFDF) when compared to culture on native collagen. The transglutaminase-treated collagen substrates also showed a greater resistance to cell-mediated endogenous protease degradation than the native collagen. In addition, the HOB cells were shown to differentiate at a faster rate than on native collagen when assessed by measurement of alkaline phosphatase activity and osteopontin expression. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
The clustering pattern of diffuse, primitive and classic β-amyloid (Aβ) deposits was studied in the upper laminae of the frontal cortex of 9 patients with sporadic Alzheimer's disease (AD). Aβ stained tissue was counterstained with collagen type IV antiserum to determine whether the clusters of Aβ deposits were related to blood vessels. In all patients, Aβ deposits and blood vessels were clustered, with in many patients, a regular periodicity of clusters along the cortex parallel to the pia. The classic Aβ deposit clusters coincided with those of the larger blood vessels in all patients and with clusters of smaller blood vessels in 4 patients. Diffuse deposit clusters were related to blood vessels in 3 patients. Primitive deposit clusters were either unrelated to or negatively correlated with the blood vessels in six patients. Hence, Aβ deposit subtypes differ in their relationship to blood vessels. The data suggest a direct and specific role for the larger blood vessels in the formation of amyloid cores in AD. © 1995.
Resumo:
Introduction: The density of diffuse, primitive and classic beta-amyloid (Abeta) deposits and blood vessels was studied in nine cases of sporadic Alzheimer's disease (SAD) and 10 cases of familial Alzheimer's disease (FAD) including two cases with amyloid precursor protein (APP) mutations (APP717, Val - Ile). Materials and Methods: Sections of frontal cortex stained for Abeta12-28 counterstained with collagen type IV antiserum. Densities measured along the upper cortex in 64-128, 1000 x 200 micron continuous sample fields. Results: The density of diffuse and primitive deposits was not correlated with blood vessels in FAD or SAD. The density of the classic deposits was positively correlated with the larger diameter (> 10 micron) blood vessels in all SAD cases and weakly correlated with blood vessel in three non-APP FAD cases. Conclusions: Blood vessels are less important in the formation of classic Abeta deposits in FAD compared with SAD.
Resumo:
Pulsed field gel electrophoresis of 82 intestinal spirochaete isolates showed specific differentiation of Serpulina pilosicoli and Serpulina hyodysenteriae although considerable heterogeneity was observed, especially amongst S. pilosicoli isolates. In several cases genotypically similar isolates originated from different animals suggesting that cross-species transmission may have occurred. The Caco-2 and Caco-21HT29 cell models have been proposed as potentially realistic models of intestinal infection. Quantitation of adhesion to the cells showed isolate 3 82/91 (from a bacteraemia) to adhere at significantly greater numbers than any other isolate tested. This isolate produced a PFGE profile which differed from other S. pilosicoli isolates and so would be of interest for further study. Comparison of bacteraemic and other S. pilosicoli isolates suggested that bacteraemic isolates were not more specifically adapted for adhesion to, or invasion of the epithelial cell layer than other S. pilosicoli isolates. Genotypically similar isolates from differing animal origins adhered to the Caco-2 model at similar levels. Generation of a random genomic library of S. pilosicoli and screening with species specific monoclonal antibody has enabled the identification of a gene sequence encoding a protein which showed significant homology with an ancestral form of the enzyme pyruvate oxidoreductase. Immunoscreening with polyclonal serum identified the sequences of two gene clusters and a probable arylsulphatase. One gene cluster represented a ribosomal gene cluster which has a similar molecular arrangement to Borrelia burgdorjeri, Treponema pallidum and Thermatoga maritima. The other gene cluster contained an ABC transporter protein, sorbitol dehydrogenase and phosphomannose isomerase. An ELISA type assay was used to demonstrate that isolates of S. pilosicoli could adhere to components of the extracellular matrix such as collagen (type 1), fibronectin, laminin, and porcine gastric mucin.
Resumo:
The HT-29 human colon adenocarcinoma cell line, like many epithelial cells, displays an undifferentiated phenotype when cultured on plastic substrata. Biochemical markers of differentiation, such as brush border associated enzymes and carcinoembryonic antigen were expressed at very low levels. The differentiation-inducing effects of the culture of HT-29 cells on collagen type I gels were evaluated, and were assessed by morphological appearance, brush border associated enzyme activities and the secretion of CEA. The effect that this more physiological environment had on their chemosensitivity to a panel of chemotherapeutic agents was determined, so as to indicate whether this system could be used to improve the selectivity of screening for novel anticancer agents. Initial studies were performed on HT-29 cells derived from cells seeded directly from plastic substrata onto the collagen gels (designated Non-PPC gels). Their time of exposure to the collagen was limited to the time course of a single experiment and the results suggested that a longer, more permanent exposure might produce a more pronounced differentiation. HT-29 cells were then passaged continuously on collagen gels for a minimum of 10 passages prior to experimentation (designated PPC gels). The same parameters were measured, and compared to those for the cells grown on plastic and on the non-passaged collagen gels (Non-PPC) from the original studies. Permanently passaged cells displayed a similar degree of morphological differentiation as the non-passaged cells, with both culture conditions resulting in a more pronounced differentiation than that achieved by culture on plastic. It was noted that the morphological differentiation observed was very heterogeneous, a situation also seen in xenografted tumours in vivo. The activity of alkaline phosphatase and the production of CEA was higher in the cells passaged on collagen (PPC) than the cells cultured on non-passaged collagen gel (Non-PPC) and plastic. The biochemical determination of aminopeptidase activity showed that collagen gel culture enhanced the activity in both non-passaged and passaged HT-29 cells above that of the cells cultured on plastic. However, immunocytochemical localization of aminopeptidase and sucrase-isomaltase of samples of cells grown on the various substrata for 7, 14, 21 and 28 days showed a reduction in both enzymes in the cells grown on collagen gels when compared to cells grown on plastic. The reason for the discrepancy between the two assays for aminopeptidase is at this stage unexplained. Although, there was evidence to suggest that the culture of HT-29 cells on collagen gels was capable of inducing morphological and biochemical markers of enterocytic differentiation, there were no differences in the chemosensitivity of the different cell groups to a panel of anticancer agents. Preliminary studies suggested that the ability of the cells to polarize by their culture on porous filter chambers without any exogenous ECM was sufficient to enhance HT-29 differentiation and the onset of differentiation was probably correlated with the production of ECM by the cells themselves.
Resumo:
We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-beta1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.
Resumo:
STUDY DESIGN: The effect of human intervertebral disc aggrecan on endothelial cell growth was examined using cell culture assays. OBJECTIVE: To determine the response of endothelial cells to human intervertebral disc aggrecan, and whether the amount and type of aggrecan present in the intervertebral disc may be implicated in disc vascularization. SUMMARY OF BACKGROUND DATA: Intervertebral disc degeneration has been associated with a loss of proteoglycan, and the ingrowth of blood vessels and nerves. Neovascularization is a common feature also of disc herniation. Intervertebral disc aggrecan is inhibitory to sensory nerve growth, but the effects of disc aggrecan on endothelial cell growth are not known. METHODS: Aggrecan monomers were isolated separately from the anulus fibrosus and nucleus pulposus of human lumbar intervertebral discs, and characterized to determine the amount and type of sulfated glycosaminoglycan side chains present. The effects of these aggrecan isolates on the cellular adhesion and migration of the human endothelial cell lines, HMEC-1 and EAhy-926, were examined in vitro. RESULTS: Homogenous substrata of disc aggrecan inhibited endothelial cell adhesion and cell spreading in a concentration dependent manner. In substrata choice assays, endothelial cells seeded onto collagen type I migrated over the collagen until they encountered substrata of disc aggrecan, where they either stopped migrating, retreated onto the collagen, or, more commonly, changed direction to align along the collagen-aggrecan border. The inhibitory effect of aggrecan on endothelial cell migration was concentration dependent, and reduced by enzymatic treatment of the aggrecan monomers with a combination of chondroitinase ABC and keratinase/keratinase II. Anulus fibrosus aggrecan was more inhibitory to endothelial cell adhesion than nucleus pulposus aggrecan. However, this difference did not relate to the extent to which the different aggrecan isolates were charged, as determined by colorimetric assay with 1,9-dimethylmethylene blue, or to marked differences in the distribution of chondroitin sulfated and keratan sulfated side chains. CONCLUSIONS: Human intervertebral disc aggrecan is inhibitory to endothelial cell migration, and this inhibitory effect appears to depend, in part, on the presence of glycosaminoglycan side chains on the aggrecan monomer.
Resumo:
Mesenchymal stem cells (MSCs) stimulate angiogenesis within a wound environment and this effect is mediated through paracrine interactions with the endothelial cells present. Here we report that human MSC-conditioned medium (n=3 donors) significantly increased EaHy-926 endothelial cell adhesion and cell migration, but that this stimulatory effect was markedly donor-dependent. MALDI-TOF/TOF mass spectrometry demonstrated that whilst collagen type I and fibronectin were secreted by all of the MSC cultures, the small leucine rich proteoglycan, decorin was secreted only by the MSC culture that was least effective upon EaHy-926 cells. These individual extracellular matrix components were then tested as culture substrata. EaHy-926 cell adherence was greatest on fibronectin-coated surfaces with least adherence on decorin-coated surfaces. Scratch wound assays were used to examine cell migration. EaHy-926 cell scratch wound closure was quickest on substrates of fibronectin and slowest on decorin. However, EaHy-926 cell migration was stimulated by the addition of MSC-conditioned medium irrespective of the types of culture substrates. These data suggest that whilst the MSC secretome may generally be considered angiogenic, the composition of the secretome is variable and this variation probably contributes to donor-donor differences in activity. Hence, screening and optimizing MSC secretomes will improve the clinical effectiveness of pro-angiogenic MSC-based therapies.
Resumo:
This study investigated the effect on the mechanical and physicochemical properties of type II collagen scaffolds after cross-linking with microbial transglutaminase (mTGase). It is intended to develop a collagen-based scaffold to be used for the treatment of degenerated intervertebral discs. By measuring the amount of ε-(γ-glutamyl)lysine isodipeptide formed after cross-linking, it was determined that the optimal enzyme concentration was 0.005% (w/v). From the production of covalent bonds induced by mTGase cross-linking, the degradation resistance of type II collagen scaffolds can be enhanced. Rheological analysis revealed an almost sixfold increase in storage modulus (G') with 0.005% (w/v) mTGase cross-linked scaffolds (1.31 ± 0.03 kPa) compared to controls (0.21 ± 0.01 kPa). There was a significant reduction in the level of cell-mediated contraction of scaffolds with increased mTGase concentrations. Cell proliferation assays showed that mTGase cross-linked scaffolds exhibited similar cytocompatibility properties in comparison to non-cross-linked scaffolds. In summary, cross-linking type II collagen with mTGase imparted more desirable properties, making it more applicable for use as a scaffold in tissue engineering applications. © Mary Ann Liebert, Inc.
Resumo:
Surface modification techniques have been used to develop biomimetic scaffolds by incorporating cell adhesion peptides, which facilitates cell adhesion, migration and proliferation. In this study, we evaluated the cell adhesion properties of a tailored laminin-332 alpha3 chain tethered to a type I collagen scaffold using microbial transglutaminase (mTGase) by incorporating transglutaminase substrate peptide sequences containing either glutamine (peptide A: PPFLMLLKGSTREAQQIVM) or lysine (peptide B: PPFLMLLKGSTRKKKKG). The degree of cross-linking was studied by amino acid analysis following proteolytic digestion and the structural changes in the modified scaffold further investigated using Fourier transform infrared spectroscopy and atomic force microscopy. Fibroblasts were used to evaluate the cellular behaviour of the functionalized collagen scaffold. mTGase supports cell growth but tethering of peptide A and peptide B to the mTGase cross-linked collagen scaffold caused a significant increase in cell proliferation when compared with native and mTGase cross-linked collagen scaffolds. Both peptides enabled cell-spreading, attachment and normal actin cytoskeleton organization with slight increase in the cell proliferation was observed in peptide A when compared with the peptide B and mTGase cross-linked scaffold. An increase in the amount of epsilon(gamma-glutamyl) lysine isopeptide was observed in peptide A conjugated scaffolds when compared with peptide B conjugated scaffolds, mTGase cross-linked scaffold without peptide. Changes in D-spacing were observed in the cross-linked scaffolds with tethered peptides. These results demonstrate that mTGase can play a bifunctional role in both conjugation of the glutamine and lysine containing peptide sequences and also in the cross-linking of the collagen scaffold, thus providing a suitable substrate for cell growth.
Resumo:
Cell adhesion peptide regulates various cellular functions like proliferation, attachment, and spreading. The cellular response to laminin peptide (PPFLMLLKGSTR), a motif of laminin-5 alpha3 chain, tethered to type I collagen, crosslinked using microbial transglutaminase (mTGase) was investigated. mTGase is an enzyme that initiates crosslinking by reacting with the glutamine and lysine residues on the collagen fibers stabilizing the molecular structure. In this study that tethering of the laminin peptide in a mTGase crosslinked collagen scaffold enhanced cell proliferation and attachment. Laminin peptide tethered crosslinked scaffold showed unaltered cell morphology of 3T3 fibroblasts when compared with collagen and crosslinked scaffold. The triple helical structure of collagen remained unaltered by the addition of laminin peptide. In addition a dose-dependent affinity of the laminin peptide towards collagen was seen. The degree of crosslinking was measured by amino acid analysis, differential scanning calorimeter and fourier transform infrared spectroscopy. Increased crosslinking was observed in mTGase crosslinked group. mTGase crosslinking showed higher shrinkage temperature. There was alteration in the fibrillar architecture due to the crosslinking activity of mTGase. Hence, the use of enzyme-mediated linking shows promise in tethering cell adhesive peptides through biodegradable scaffolds.
Resumo:
Tissue Transglutaminase (TG2) and FXIIIa, members of the transglutaminase (TG) family, catalyses a transamidating reaction and form covalent bond between or within proteins. In bone development, both enzymes expressions correlate with the initial of the mineralisation process by osteoblasts and chondrocytes. Exogenous TG2 also promotes maturation of chondrocytes and mineralisation in pre-osteoblasts. To understand the role of endogenous TG2 in osteoblast mineralisation, the TG2 expression was examined during the human osteoblast (HOB) mineralisation. The expression of the endogenous TG2 increased during the mineralisation, yet, its expression was not essential for mineral deposition due to the compensation effect by other members in the TG family. The extracellular transamidating activity of HOBs was found increased during mineralisation and a shift from FXIIIa dominant- to TG2-dominant crosslinking activity was suggested after differentiation. However, the transamidating activity of both TG2 and FXIIIa were not critical for cell mineralisation. On the other hand, Exogenous TG2 was found to enhance wild type HOB and TG2 knockdown HOB mineral deposition. The transamidating activity of TG2 was not required but most likely a close conformation was essential for this enhancement. Results also demonstrated that exogenous TG2 may activate the ß-catenin pathway through LRP5 receptor thus contribute in cell mineralisation. This enhancement could be abolished by addition of ß-catenin inhibitors. Finally, using of TG2 crosslinked collagen gel for bone and cornea repair was evaluated. Crosslinked collagen gel showed promising results in improving HOB mineralisation, human corneal fibroblast (hCF) proliferation and migration. These effects might be resulted from the trapped TG2 within the collagen matrix and the alteration of matrix topography by TG2.