12 resultados para cloud radio access network
em Aston University Research Archive
Resumo:
In this paper new architectural approaches that improve the energy efficiency of a cellular radio access network (RAN) are investigated. The aim of the paper is to characterize both the energy consumption ratio (ECR) and the energy consumption gain (ECG) of a cellular RAN when the cell size is reduced for a given user density and service area. The paper affirms that reducing the cell size reduces the cell ECR as desired while increasing the capacity density but the overall RAN energy consumption remains unchanged. In order to trade the increase in capacity density with RAN energy consumption, without degrading the cell capacity provision, a sleep mode is introduced. In sleep mode, cells without active users are powered-off, thereby saving energy. By combining a sleep mode with a small-cell deployment architecture, the paper shows that the ECG can be increased by the factor n = (R/R) while the cell ECR continues to decrease with decreasing cell size.
Resumo:
The rapidly increasing demand for cellular telephony is placing greater demand on the limited bandwidth resources available. This research is concerned with techniques which enhance the capacity of a Direct-Sequence Code-Division-Multiple-Access (DS-CDMA) mobile telephone network. The capacity of both Private Mobile Radio (PMR) and cellular networks are derived and the many techniques which are currently available are reviewed. Areas which may be further investigated are identified. One technique which is developed is the sectorisation of a cell into toroidal rings. This is shown to provide an increased system capacity when the cell is split into these concentric rings and this is compared with cell clustering and other sectorisation schemes. Another technique for increasing the capacity is achieved by adding to the amount of inherent randomness within the transmitted signal so that the system is better able to extract the wanted signal. A system model has been produced for a cellular DS-CDMA network and the results are presented for two possible strategies. One of these strategies is the variation of the chip duration over a signal bit period. Several different variation functions are tried and a sinusoidal function is shown to provide the greatest increase in the maximum number of system users for any given signal-to-noise ratio. The other strategy considered is the use of additive amplitude modulation together with data/chip phase-shift-keying. The amplitude variations are determined by a sparse code so that the average system power is held near its nominal level. This strategy is shown to provide no further capacity since the system is sensitive to amplitude variations. When both strategies are employed, however, the sensitivity to amplitude variations is shown to reduce, thus indicating that the first strategy both increases the capacity and the ability to handle fluctuations in the received signal power.
Resumo:
Energy consumption in wireless networks, and in particular in cellular mobile networks, is now of major concern in respect of their potential adverse impact upon the environment and their escalating operating energy costs. The recent phenomenal growth of data services in cellular mobile networks has exacerbated the energy consumption issue and is forcing researchers to address how to design future wireless networks that take into account energy consumption constraints. One fundamental approach to reduce energy consumption of wireless networks is to adopt new radio access architectures and radio techniques. The Mobile VCE (MVCE) Green Radio project, established in 2009, is considering such new architectural and technical approaches. This paper reports highlights the key research issues pursued in the MVCE Green Radio project.
Resumo:
The objective of this paper is to combine the antenna downtilt selection with the cell size selection in order to reduce the overall radio frequency (RF) transmission power in the homogeneous High-Speed Packet Downlink (HSDPA) cellular radio access network (RAN). The analysis is based on the concept of small cells deployment. The energy consumption ratio (ECR) and the energy reduction gain (ERG) of the cellular RAN are calculated for different antenna tilts when the cell size is being reduced for a given user density and service area. The results have shown that a suitable antenna tilt and the RF power setting can achieve an overall energy reduction of up to 82.56%. Equally, our results demonstrate that a small cell deployment can considerably reduce the overall energy consumption of a cellular network.
Resumo:
It is desirable that energy performance improvement is not realized at the expense of other network performance parameters. This paper investigates the trade off between energy efficiency, spectral efficiency and user QoS performance for a multi-cell multi-user radio access network. Specifically, the energy consumption ratio (ECR) and the spectral efficiency of several common frequency domain packet schedulers in a cellular E-UTRAN downlink are compared for both the SISO transmission mode and the 2x2 Alamouti Space Frequency Block Code (SFBC) MIMO transmission mode. It is well known that the 2x2 SFBC MIMO transmission mode is more spectrally efficient compared to the SISO transmission mode, however, the relationship between energy efficiency and spectral efficiency is undecided. It is shown that, for the E-UTRAN downlink with fixed transmission power, spectral efficiency improvement results into energy efficiency improvement. The effect of SFBC MIMO versus SISO on the user QoS performance is also studied. © 2011 IEEE.
Resumo:
Fibre-to-the-premises (FTTP) has been long sought as the ultimate solution to satisfy the demand for broadband access in the foreseeable future, and offer distance-independent data rate within access network reach. However, currently deployed FTTP networks have in most cases only replaced the transmission medium, without improving the overall architecture, resulting in deployments that are only cost efficient in densely populated areas (effectively increasing the digital divide). In addition, the large potential increase in access capacity cannot be matched by a similar increase in core capacity at competitive cost, effectively moving the bottleneck from access to core. DISCUS is a European Integrated Project that, building on optical-centric solutions such as Long-Reach Passive Optical access and flat optical core, aims to deliver a cost-effective architecture for ubiquitous broadband services. One of the key features of the project is the end-to-end approach, which promises to deliver a complete network design and a conclusive analysis of its economic viability. © 2013 IEEE.
Resumo:
A network concept is introduced that exploits transparent optical grooming of traffic between an access network and a metro core ring network. This network is enabled by an optical router that allows bufferless aggregation of metro network traffic into higher-capacity data streams for core network transmission. A key functionality of the router is WDM to time-division multiplexing (TDM) transmultiplexing.
Resumo:
The development of sensing devices is one of the instrumentation fields that has grown rapidly in the last decade. Corresponding to the swift advance in the development of microelectronic sensors, optical fibre sensors are widely investigated because of their advantageous properties over the electronics sensors such as their wavelength multiplexing capability and high sensitivity to temperature, pressure, strain, vibration and acoustic emission. Moreover, optical fibre sensors are more attractive than the electronics sensors as they can perform distributed sensing, in terms of covering a reasonably large area using a single piece of fibre. Apart from being a responsive element in the sensing field, optical fibre possesses good assets in generating, distributing, processing and transmitting signals in the future broadband information network. These assets include wide bandwidth, high capacity and low loss that grant mobility and flexibility for wireless access systems. Among these core technologies, the fibre optic signal processing and transmission of optical and radio frequency signals have been the subjects of study in this thesis. Based on the intrinsic properties of single-mode optical fibre, this thesis aims to exploit the fibre characteristics such as thermal sensitivity, birefringence, dispersion and nonlinearity, in the applications of temperature sensing and radio-over-fibre systems. By exploiting the fibre thermal sensitivity, a fully distributed temperature sensing system consisting of an apodised chirped fibre Bragg grating has been implemented. The proposed system has proven to be efficient in characterising grating and providing the information of temperature variation, location and width of the heat source applied in the area under test.To exploit the fibre birefringence, a fibre delay line filter using a single high-birefringence optical fibre structure has been presented. The proposed filter can be reconfigured and programmed by adjusting the input azimuth of launched light, as well as the strength and direction of the applied coupling, to meet the requirements of signal processing for different purposes in microwave photonic and optical filtering applications. To exploit the fibre dispersion and nonlinearity, experimental investigations have been carried out to study their joint effect in high power double-sideband and single-sideband modulated links with the presence of fibre loss. The experimental results have been theoretically verified based on the in-house implementation of the split-step Fourier method applied to the generalised nonlinear Schrödinger equation. Further simulation study on the inter-modulation distortion in two-tone signal transmission has also been presented so as to show the effect of nonlinearity of one channel on the other. In addition to the experimental work, numerical simulations have also been carried out in all the proposed systems, to ensure that all the aspects concerned are comprehensively investigated.
Resumo:
Groupe Spécial Mobile (GSM) has been developed as the pan-European second generation of digital mobile systems. GSM operates in the 900 MHz frequency band and employs digital technology instead of the analogue technology of its predecessors. Digital technology enables the GSM system to operate in much smaller zones in comparison with the analogue systems. The GSM system will offer greater roaming facilities to its subscribers, extended throughout the countries that have installed the system. The GSM system could be seen as a further enhancement to European integration. GSM has adopted a contention-based protocol for multipoint-to-point transmission. In particular, the slotted-ALOHA medium access protocol is used to coordinate the transmission of the channel request messages between the scattered mobile stations. Collision still happens when more than one mobile station having the same random reference number attempts to transmit on the same time-slot. In this research, a modified version of this protocol has been developed in order to reduce the number of collisions and hence increase the random access channel throughput compared to the existing protocol. The performance evaluation of the protocol has been carried out using simulation methods. Due to the growing demand for mobile radio telephony as well as for data services, optimal usage of the scarce availability radio spectrum is becoming increasingly important. In this research, a protocol has been developed whereby the number of transmitted information packets over the GSM system is increased without any additional increase of the allocated radio spectrum. Simulation results are presented to show the improvements achieved by the proposed protocol. Cellular mobile radio networks commonly respond to an increase in the service demand by using smaller coverage areas. As a result, the volume of the signalling exchanges increases. In this research, a proposal for interconnecting the various entitles of the mobile radio network over the future broadband networks based on the IEEE 802.6 Metropolitan Area Network (MAN) is outlined. Simulation results are presented to show the benefits achieved by interconnecting these entities over the broadband Networks.
Resumo:
Recent technological advances have paved the way for developing and offering advanced services for the stakeholders in the agricultural sector. A paradigm shift is underway from proprietary and monolithic tools to Internet-based, cloud hosted, open systems that will enable more effective collaboration between stakeholders. This new paradigm includes the technological support of application developers to create specialized services that will seamlessly interoperate, thus creating a sophisticated and customisable working environment for the end users. We present the implementation of an open architecture that instantiates such an approach, based on a set of domain independent software tools called "generic enablers" that have been developed in the context of the FI-WARE project. The implementation is used to validate a number of innovative concepts for the agricultural sector such as the notion of a services' market place and the system's adaptation to network failures. During the design and implementation phase, the system has been evaluated by end users, offering us valuable feedback. The results of the evaluation process validate the acceptance of such a system and the need of farmers to have access to sophisticated services at affordable prices. A summary of this evaluation process is also presented in this paper. © 2013 Elsevier B.V.
Resumo:
In this study, two linear coplanar array antennas based on Indium Phosphide (InP) substrate are designed, presented and compared in terms of bandwidth and gain. Slot introduction in combination with coplanar structure is investigated, providing enhanced antenna gain and bandwidth at the 60 GHz frequency band. In addition the proposed array antennas are evaluated in terms of integration with a high-speed photodiode and investigated in terms of matching, providing a bandwidth that reaches 2 GHz. Moreover a potential beam forming scenario combined with photonic up-conversion scheme has been proposed. © 2013 IEEE.