21 resultados para choroidal neovascularization
em Aston University Research Archive
Resumo:
Purpose - To compare the visual outcomes after verteporfin photodynamic therapy (VPDT) administered in routine clinical practice with those observed in the Treatment of Age-related macular degeneration with Photodynamic therapy (TAP) trials and to quantify the effects of clinically important baseline covariates on outcome. Design - A prospective longitudinal study of patients treated with VPDT in 45 ophthalmology departments in the United Kingdom with expertise in the management of neovascular age-related macular degeneration (nAMD). Participants - Patients with wholly or predominantly classic choroidal neovascularization (CNV) of any cause with a visual acuity =20/200 in the eye to be treated. Methods - Refracted best-corrected visual acuity (BCVA) and contrast sensitivity were measured in VPDT-treated eyes at baseline and subsequent visits. Eyes were retreated at 3 months if CNV was judged to be active. Baseline angiograms were graded to quantify the percentages of classic and occult CNV. Treated eyes were categorized as eligible or ineligible for TAP, or unclassifiable. Main Outcome Measures - Best-corrected visual acuity and contrast sensitivity during 1 year of follow-up after initial treatment. Results - A total of 7748 treated patients were recruited. Data from 4043 patients with a diagnosis of nAMD were used in the present analysis. Reading center determination of lesion type showed that 87% were predominantly classic CNV. Eyes received 2.4 treatments in year 1 and 0.4 treatments in year 2. Deterioration of BCVA over 1 year was similar to that observed in the VPDT arms of the TAP trials and was not influenced by TAP eligibility classification. Best-corrected visual acuity deteriorated more quickly in current smokers; with increasing proportion of classic CNV, increasing age, and better baseline BCVA; and when the fellow eye was the better eye.
Resumo:
Purpose. To evaluate the repeatability and reproducibility of subfoveal choroidal thickness (CT) calculations performed manually using optical coherence tomography (OCT). Methods. The CT was imaged in vivo at each of two visits on 11 healthy volunteers (mean age, 35.72 ± 13.19 years) using the spectral domain OCT. CT was manually measured after applying ImageJ processing filters on 15 radial subfoveal scans. Each radial scan was spaced 12° from each other and contained 2500 A-scans. The coefficient of variability, coefficient of repeatability (CoR), coefficient of reproducibility, and intraclass correlation coefficient determined the reproducibility and repeatability of the calculation. Axial length (AL) and mean spherical equivalent refractive error were measured with the IOLMaster and an open view autorefractor to study their potential relationship with CT. Results. The within-visit and between-visit coefficient of variability, CoR, coefficient of reproducibility, and intraclass correlation coefficient were 0.80, 2.97% 2.44%, and 99%, respectively. The subfoveal CT correlated significantly with AL (R = -0.60, p = 0.05). Conclusions. The subfoveal CT could be measured manually in vivo using OCT and the readings obtained from the healthy subjects evaluated were repeatable and reproducible. It is proposed that OCT could be a useful instrument to perform in vivo assessment and monitoring of CT changes in retinal disease. The preliminary results suggest a negative correlation between subfoveal CT and AL in such a way that it decreases with increasing AL but not with refractive error.
Resumo:
Punctate inner choroidopathy is an idiopathic inflammatory ocular disorder characteristically seen in young myopic women. Visual prognosis is generally good but sight threatening choroidal neovascularisation may develop in up to 40% patients.1 We discuss verteporfin photodynamic therapy in subfoveal choroidal neovascularisation secondary to punctate inner choroidopathy that failed to respond to oral corticosteroids and had poor results with submacular surgery in the contralateral eye.
Resumo:
The treatment of choroidal neovascularisation (CNV) secondary to pathological myopia has presented a number of problems to ophthalmologists over the years, but the advent of photodynamic therapy (PDT) with verteporfin has changed how we manage these patients. Until PDT became available, the use of laser photocoagulation for extra and juxtafoveal lesions had been shown to be effective in the short term in preventing loss of vision, although the risk of regrowth of CNV and undertreatment were well recognised. However, even in apparent successful cases of photocoagulation, laser scar enlargement and creepage into the fovea in the mid-to-long term often occurred with resulting loss of central vision.1 Other options for treatment were very limited with little evidence that other modalities such as transpupillary thermotherapy or submacular surgery and macular transplantation surgery would be successful in highly myopic eyes. The evidence for the role of PDT and verteporfin CNV secondary to pathological myopia comes from the verteporfin in photodynamic therapy (VIP) study that has shown how effective this treatment is in eyes with subfoveal CNV.2, 3 Now in this publication, Lam et al4 from Hong Kong have shown that PDT is also effective in juxtafoveal CNV, with high myopia. They performed a small prospective study of 11 patients of mean age 44.8 years, with 12 months of follow-up. They found that there was a mean improvement of 1.8 lines of LogMAR best-corrected visual acuity (BCVA) at 12 months, with a mean number of 2.3 PDT treatments. The most rapid improvement occurred within the first 3 months of treatment and by 12 months none of the patients had suffered a deterioration in BCVA from baseline. There were no cases of adverse effects from the infusion or laser treatment. For ophthalmologists dealing with patients with CNV secondary to causes other than AMD, this is further evidence of the effectiveness of PDT with verteporfin in maintaining vision. These patients are likely to be younger than those with AMD and are likely to be in active employment and supporting families, and clearly the preservation of best vision possible is imperative in this group. It is therefore encouraging for ophthalmologists in the United Kingdom that the verteporfin in PDT Cohort Study (VPDT Study) includes the ability to treat patients with subfoveal CNV secondary to high myopia if they fulfill National Institute of Clinical Excellence guidelines, and will allow representations to be made on an individual basis for treatment of juxtafoveal lesions.5 For those ophthalmologists used to juggling increased patient expectations with scarce NHS resources, this is promising news and will allow us to offer a better standard of care to our patients.
Resumo:
S-glutathionylation occurs when reactive oxygen or nitrogen species react with protein-cysteine thiols. Glutaredoxin-1 (Glrx) is a cytosolic enzyme which enzymatically catalyses the reduction in S-glutathionylation, conferring reversible signalling function to proteins with redox-sensitive thiols. Glrx can regulate vascular hypertrophy and inflammation by regulating the activity of nuclear factor κB (NF-κB) and actin polymerization. Vascular endothelial growth factor (VEGF)-induced endothelial cell (EC) migration is inhibited by Glrx overexpression. In mice overexpressing Glrx, blood flow recovery, exercise function and capillary density were significantly attenuated after hindlimb ischaemia (HLI). Wnt5a and soluble Fms-like tyrosine kinase-1 (sFlt-1) were enhanced in the ischaemic-limb muscle and plasma respectively from Glrx transgenic (TG) mice. A Wnt5a/sFlt-1 pathway had been described in myeloid cells controlling retinal blood vessel development. Interestingly, a Wnt5a/sFlt-1 pathway was found also to play a role in EC to inhibit network formation. S-glutathionylation of NF-κB components inhibits its activation. Up-regulated Glrx stimulated the Wnt5a/sFlt-1 pathway through enhancing NF-κB signalling. These studies show a novel role for Glrx in post-ischaemic neovascularization, which could define a potential target for therapy of impaired angiogenesis in pathological conditions including diabetes.
Resumo:
Repair of tissue after injury depends on a series of concerted but overlapping events including, inflammation, re-epithelialization, neovascularization and synthesis and stabilization of a fibrous extracellular matrix (ECM) that is remodeled to emulate normal tissue over time. Particular members of the transglutaminase (TG) family are upregulated during wound healing and act as a novel class of wound-healing mediators during the repair process. This group of enzymes which crosslink proteins via epsilon(gamma-glutamyl) lysine bridges are involved in wound healing through their ability to stabilize proteins and also by regulating the behavior of a wide variety of cell types that are recruited to the damaged area in order to carry out tissue repair. In this article we discuss the function of the most widely expressed member of the TG family "tissue transglutaminase" (TG2) in wound repair. Using both early and recent evidence from the literature we demonstrate how the multifunctional TG2 affects the stability of the ECM, cell-ECM interactions and as a consequence cell behavior within the different phases of wound healing, and highlight how TG2 itself might be exploited for therapeutic use.
Resumo:
The thesis aims to define further the biometric correlates in anisometropic eyes in order to provide a structural foundation for propositions concerning the development of ametropia.Biometric data are presented for 40 anisometropes and 40 isometropic controls drawn from Caucasian and Chinese populations.The principal finding was that the main structural correlate of myopia is an increase in axial rather than equatorial dimensions of the posterior globe. This finding has not been previously reported for in vivo work on humans. The computational method described in the thesis is a more accessible method for determination of eye shape than current imaging techniques such as magnetic resonance imaging or laser Doppler interferometry (LDI). Retinal contours derived from LDI and computation were shown to be closely matched. Corneal topography revealed no differences in corneal characteristics in anisometropic eyes, which supports the finding that anisometropia arises from differences in vitreous chamber depth.The corollary to axial expansion in myopia, that is retinal stretch in central regions of the posterior pole, was investigated by measurement of disc-to-fovea distances (DFD) using a scanning laser ophthalmoscope. DFD was found to increase with increased myopia, which demonstrates the primary contribution made by posterior central regions of the globe to axial expansion.The ocular pulse volume and choroidal blood flow, measured with the Ocular Blood Flow Tonograph, were found to be reduced in myopia; the reductions were found to be significantly correlated with vitreous chamber depth. The thesis includes preliminary data on whether the relationship arises from the influx of a blood bolus into eyes of different posterior volumes or represents actual differences in choroidal blood flow.The results presented in this thesis show the utility of computed retinal contour and demonstrate that the structural correlate of myopia is axial rather than equatorial expansion of the vitreous chamber. The technique is suitable for large population studies and its relative simplicity makes it feasible for longitudinal studies on the development of ametropia in, for example, children.
Resumo:
This study investigated the detrimental effect of central field loss (CFL) on reading ability and general visual function. The aim was to improve the understanding of reading with eccentric retina in order that reading performances of individuals with CFL may be maximised. To improve visual ability of individuals with CFL, it is important to be able to accurately measure the outcome of any intervention. Various methods for determining visual function were therefore compared with perceived visual performance (as measured with a quality of life questionnaire) before and after surgical removal of choroidal new vessels (CNV) in macular disease patients. The results highlight the importance of low contrast measures (low contrast visual acuity and contrast sensitivity) when investigating perceived reading performance. Reading speed was found to be important for reflecting changes in general visual quality of life. Potential causes for reduced peripheral reading ability were investigated using both normally sighted and CFL subjects. For normally sighted subjects reading eccentrically with rapid serial visual presentation (RSVP) text, the inferior visual field was a better position (in terms of reading speed) for the presentation of the text. The size of the visual span was found to reduce with increasing eccentricity of fixation, providing a potential reason for reduced peripheral reading performances. The investigation of the ability to use context when reading with peripheral retina resulted in conflicting results. Studies in this thesis found both a reduction and no reduction in the ability of the peripheral retina to utilise context compared to the fovea. Individuals with long-term CFL showed no improvement in peripheral reading ability over that found for normally sighted subjects reading at the same eccentricity.
Resumo:
By addressing the vascular features that characterise myopia, this thesis aims to provide an understanding of the early structural changes associated with human myopia and the progression to co-morbidity with age. This thesis addresses three main areas of study: 1. Ocular perfusion features and autoregulatory mechanisms in human myopia; 2. Choroidal thickness at the macular area of myopic eyes; 3. Effect of chronic smoking on the ocular haemodynamics and autoregulation. This thesis demonstrated a reduced resting ocular pulse amplitude and retrobulbar blood flow in human myopia, associated with an apparent oversensitivity to the vasodilatory effects of hypercapnia, which may be due to anatomical differences in the volume of the vessel beds. In young smokers, normal resting state vascular characteristics were present; however there also appeared to be increased reactivity to hypercapnia, possibly due to relative chronic hypoxia. The systemic circulation in myopes and smokers over-reacted similarly to hypercapnia suggesting that physiologic differences are not confined to the eye. Age also showed a negative effect on autoregulatory capacity in otherwise normal eyes. Collectively, these findings suggest that myopes and smokers require greater autoregulatory capacity to maintain appropriate oxygenation of retinal tissue, and since the capacity for such regulation reduces with age, these groups are at greater risk of insufficient autoregulation and relative hypoxia with age.
Resumo:
The relationship between accommodation and intraocular pressure (lOP) has not been addressed as a research question for over 20 years, when measurement of both of these parameters was less advanced than today. Hence the central aim of this thesis was to evaluate the effects of accommodation on lOP. The instrument of choice throughout this thesis was the Pulsair EasyEye non-contact tonometer (NCT) due principally to its slim-line design which allowed the measurement of lOP in one eye and simultaneous stimulation of accommodation in the other eye. A second reason for using the Pulsair EasyEye NCT was that through collaboration with the manufacturers (Keeler, UK) the instrument's operational technology was made accessible. Hence, the principle components underpinning non-contact lOP measures of 0.1mmHg resolution (an order of magnitude greater than other methods) were made available. The relationship between the pressure-output and corneal response has been termed the pressure-response relationship, aspects of which have been shown to be related to ocular biometric parameters. Further, analysis of the components of the pressure-response relationship together with high-speed photography of the cornea during tonometry has enhanced our understanding of the derivation of an lOP measure with the Pulsair EasyEye NCT. The NCT samples the corneal response to the pressure pulse over a 19 ms cycle photoelectronically, but computes the subject's lOP using the data collected in the first 2.34 ms. The relatively instantaneous nature of the lOP measurement renders the measures susceptible to variations in the steady-state lOP caused by the respiratory and cardiac cycles. As such, the variance associated with these cycles was minimised by synchronising the lOP measures with the cardiac trace and maintaining a constant pace respiratory cycle at 15 breathes/minute. It is apparent that synchronising the lOP measures with the peak, middle or trough of the cardiac trace significantly reduced the spread of consecutive measures. Of the 3 locations investigated, synchronisation with the middle location demonstrated the least variance (coeflicient of variation = 9.1%) and a strong correlation (r = 0.90, p = <0.001) with lOP values obtained with Goldmann contact tonometry (n = 50). Accordingly lOP measures synchronised with the middle location of the cardiac cycle were taken in the RE while the LE fixated low (L; zero D), intermediate (I; 1.50 D) and high (H; 4 D) accommodation targets, Quasi-continuous measures of accommodation responses were obtained during the lOP measurement period using the portable infrared Grand Seiko FR-5000 autorefractor. The lOP reduced between L and I accommodative levels by approximately 0.61 mmHg (p <0.00 I). No significant reduction in IOP between L and H accommodation levels was elicited (p = 0.65) (n = 40). The relationship between accommodation and lOP was characterised by substantial inter-subject variations. Myopes demonstrated a tendency to show a reduction in IOP with accommodation which was significant only with I accommodation levels when measured with the NCT (r = 0.50, p = 0.01). However, the relationship between myopia and lOP change with accommodation reached significance for both I (r = 0.61, p= 0.003) and H (r = 0.531, p= 0.0 1) accommodation levels when measured with the Ocular blood Flow Analyser (OBFA). Investigation of the effects of accommodation on the parameters measured by the OBFA demonstrated that with H accommodation levels the pulse amplitude (PA) and pulse rate (PR) responses differed between myopes and emmetropes (PA: p = 0.03; PR: p = 0.004). As thc axial length increased there was a tendency for the pulsatile ocular blood flow (POBF) to reduce with accommodation, which was significant only with H accommodation levels (r = 0.38, p = 0.02). It is proposed that emmetropes arc able to regulate the POBF responses to changes in ocular perfusion pressure caused by changes in lOP with I (r = 0.77, p <0.001) and H (r = 0.73, p = 0.001) accommodation levels. However, thc relationship between lOP and POBF changes in the myopes was not correlated for both I (r = 0.33, p = 0.20) and H (r = 0.05, p = 0.85) accommodation levels. The thesis presents new data on the relationships between accommodation, lOP and parameters of the OBFA,: and provides evidence for possible lOP and choroidal blood flow regulatory mechanisms. Further the data highlight possible deficits in the vascular regulation of the myopic eye during accommodation, which may play a putative role in the aetiology of myopia development.
Resumo:
Purpose: To demonstrate the importance of OCT examination of fellow, normal eyes in unilateral nAMD follow up clinics. Methods: The authors present three cases of unilateral nAMD who were undergoing treatment with ranibizumab, in whom OCT evaluation of the previously unaffected, asymptomatic fellow eye allowed early diagnosis, treatment and preservation of vision. Fundus examination had previously failed to demonstrate abnormality. Results: Intravitreal anti-VEGF treatment for nAMD has caused a sharp increase in the number of subjects attending macular clinics, frequently overburdening the system. It may sometimes be tempting for hospitals to reduce the workload by for example, concentrating only on OCT examination of the affected eye in cases of unilateral nAMD. The three reported cases demonstrate that OCT scanning of the fellow, previously unaffected eye is essential in detecting asymptomatic nAMD, which gives a better chance of preservation of vision. Conclusions: Patients with unilateral neovascular AMD undergoing review in macular clinics should always undergo OCT scanning of normal, fellow eyes, as otherwise asymptomatic, “invisible” choroidal neovascular membranes may be missed.
Resumo:
Surface modification techniques have been used to develop biomimetic scaffolds by incorporating cell adhesion peptides. In our previous work, we have shown the tethering of laminin-332 α3 chain to type I collagen scaffold using microbial transglutaminase (mTGase), promotes cell adhesion, migration, and proliferation. In this study, we evaluated the wound healing properties of tailored laminin-332 α3 chain (peptide A: PPFLMLLKGSTR) tethered to a type I collagen scaffold using mTGase by incorporating transglutaminase substrate peptide sequences containing either glutamine (peptide B: PPFLMLLKGSTREAQQIVM) or lysine (peptide C: PPFLMLLKGSTRKKKKG) in rat full-thickness wound model at two different time points (7 and 21 days). Histological evaluations were assessed for wound closure, epithelialization, angiogenesis, inflammatory, fibroblastic cellular infiltrations, and quantified using stereological methods (p < 0.05). Peptide A and B tethered to collagen scaffold using mTGase stimulated neovascularization, decreased the inflammatory cell infiltration and prominently enhanced the fibroblast proliferation which significantly accelerated the wound healing process. We conclude that surface modification by incorporating motif of laminin-332 α3 chain (peptide A: PPFLMLLK GSTR) domain and transglutaminase substrate to the laminin-332 α3 chain (peptide B: PPFLMLLKGSTREAQQIVM) using mTGase may be a potential candidate for tissue engineering applications and skin regeneration. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A:2788-2795, 2013. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.
Resumo:
The human fundus is a complex structure that can be easily visualized and the world of ophthalmology is going through a golden era of new and exciting fundus imaging techniques; recent advances in technology have allowed a significant improvement in the imaging modalities clinicians have available to formulate a diagnostic and treatment plan for the patient, but there is constant on-going work to improve current technology and create new ideas in order to gather as much information as possible from the human fundus. In this article we shall summarize the imaging techniques available in the standard medical retina clinic (i.e. not limited to the research lab) and delineate the technologies that we believe will have a significant impact on the way clinicians will assess retinal and choroidal pathology in the not too distant future.
Resumo:
We have developed a new technique for extracting histological parameters from multi-spectral images of the ocular fundus. The new method uses a Monte Carlo simulation of the reflectance of the fundus to model how the spectral reflectance of the tissue varies with differing tissue histology. The model is parameterised by the concentrations of the five main absorbers found in the fundus: retinal haemoglobins, choroidal haemoglobins, choroidal melanin, RPE melanin and macular pigment. These parameters are shown to give rise to distinct variations in the tissue colouration. We use the results of the Monte Carlo simulations to construct an inverse model which maps tissue colouration onto the model parameters. This allows the concentration and distribution of the five main absorbers to be determined from suitable multi-spectral images. We propose the use of "image quotients" to allow this information to be extracted from uncalibrated image data. The filters used to acquire the images are selected to ensure a one-to-one mapping between model parameters and image quotients. To recover five model parameters uniquely, images must be acquired in six distinct spectral bands. Theoretical investigations suggest that retinal haemoglobins and macular pigment can be recovered with RMS errors of less than 10%. We present parametric maps showing the variation of these parameters across the posterior pole of the fundus. The results are in agreement with known tissue histology for normal healthy subjects. We also present an early result which suggests that, with further development, the technique could be used to successfully detect retinal haemorrhages.
Resumo:
Study Design. An immunohistological study of surgical specimens of human intervertebral disc.Objective.To examine the presence of pleiotrophin in diseased or damaged intervertebral disc tissue and the association between its presence and the extent of tissue vascularization and innervation.Summary of Background Data. Increased levels of pleiotrophin, a growth and differentiation factor that is active in various pathophysiologic processes, including angiogenesis, has been associated with osteoarthritic changes of human articular cartilage. The association between pleiotrophin expression and pathologic conditions of the human intervertebral disc is unknown.Methods. Specimens of human lumbar intervertebral discs, obtained following surgical discectomy, were divided into 3 groups: nondegenerated discs (n = 7), degenerated discs (n = 6), and prolapsed discs (n = 11). Serial tissue sections of each specimen were immunostained to determine the presence of pleiotrophin, blood vessels (CD34-positive endothelial cells), and nerves (neurofilament 200 kDa [NF200]-positive nerve fibers).Results. Pleiotrophin immunoreactivity was seen in disc cells, endothelial cells, and in the extracellular matrix in most specimens of intervertebral disc but was most prevalent in vascularized tissue in prolapsed discs. There was a significant correlation between the presence of pleiotrophin-positive disc cells and that of CD34-positive blood vessels. NF200-positive nerves were seen in vascularized areas of more degenerated discs, but nerves did not appear to codistribute with blood vessels or pleiotrophin positivity in prolapsed discs.Conclusions. Pleiotrophin is present in pathologic human intervertebral discs, and its prevalence and distribution suggest that it may play a role in neovascularization of diseased or damaged disc tissue.