20 resultados para cholesterol-lowering
em Aston University Research Archive
Resumo:
Background: Coronary heart disease (CHD) is a public health priority in the UK. The National Service Framework (NSF) has set standards for the prevention, diagnosis and treatment of CHD, which include the use of cholesterol-lowering agents aimed at achieving targets of blood total cholesterol (TC) < 5.0 mmol/L and low density lipoprotein-cholesterol (LDL-C) < 3.0 mmol/L. In order to achieve these targets cost effectively, prescribers need to make an informed choice from the range of statins available. Aim: To estimate the average and relative cost effectiveness of atorvastatin, fluvastatin, pravastatin and simvastatin in achieving the NSF LDL-C and TC targets. Design: Model-based economic evaluation. Methods: An economic model was constructed to estimate the number of patients achieving the NSF targets for LDL-C and TC at each dose of statin, and to calculate the average drug cost and incremental drug cost per patient achieving the target levels. The population baseline LDL-C and TC, and drug efficacy and drug costs were taken from previously published data. Estimates of the distribution of patients receiving each dose of statin were derived from the UK national DIN-LINK database. Results: The estimated annual drug cost per 1000 patients treated with atorvastatin was £289 000, with simvastatin £315 000, with pravastatin £333 000 and with fluvastatin £167 000. The percentages of patients achieving target are 74.4%, 46.4%, 28.4% and 13.2% for atorvastatin, simvastatin, pravastatin and fluvastatin, respectively. Incremental drug cost per extra patient treated to LDL-C and TC targets compared with fluvastafin were £198 and £226 for atorvastatin, £443 and £567 for simvastatin and £1089 and £2298 for pravastatin, using 2002 drug costs. Conclusions: As a result of its superior efficacy, atorvastatin generates a favourable cost-effectiveness profile as measured by drug cost per patient treated to LDL-C and TC targets. For a given drug budget, more patients would achieve NSF LDL-C and TC targets with atorvastatin than with any of the other statins examined.
Resumo:
Free Paper Sessions Design. Retrospective analysis. Purpose. To assess the prevalence of center-involving diabetic macular oedema (CIDMO) and risk factors. Methods. Retrospective review of patients who were screen positive for maculopathy (M1) during 2010 in East and North Birmingham. The CIDMO was diagnosed by qualitative identification of definite foveal oedema on optical coherence tomography (OCT). Results. Out of a total of 15,234 patients screened, 1194 (7.8%) were screen positive for M1 (64% bilateral). A total of 137 (11.5% of M1s) were diagnosed with macular oedema after clinical assessment. The OCT results were available for 123/137; 69 (56.1%) of these had CI-DMO (30 bilateral) which is 0.5% of total screens and 5.8% of those screen positive for M1. In those with CIDMO 60.9% were male and 63.8% Caucasian; 90% had type 2 diabetes and mean diabetes duration was 20 years (SD 9.7, range 2-48). Mean HbA1c was 8.34%±1.69, with 25% having an HbA1c =9%. Furthermore, 62% were on insulin, 67% were on antihypertensive therapy, and 64% were on a cholesterol-lowering drug. A total of 37.7% had an eGFR between 30% and 60% and 5.8% had eGFR <30. The only significant difference between the CIDMO and non-CIDMO group was mean age (67.83±12.26 vs 59.69±15.82; p=0.002). A total of 65.2% of those with CIDMO also had proliferative or preproliferative retinopathy in the worst eye and 68.1% had subsequently been treated with macular laser at the time of data review. Conclusions. The results show that the prevalence of CIDMO in our diabetic population was 0.5%. A significant proportion of macula oedema patients were found to have type 2 diabetes with long disease duration, suboptimal glycemic and hypertensive control, and low eGFR. The data support that medical and diabetic review of CIDMO patients is warranted particularly in the substantial number with poor glycemic control and if intravitreal therapies are indicated.
Resumo:
Blood cholesterol levels are not consistently elevated in subjectswith age-related cognitive decline, although epidemiological studies suggest that Alzheimer's disease and cardiovascular diseases share common risk factors. These include the presence of an unusual genetic variant, the APOE4 (apolipoprotein E4) allele, which modulates LDL (low-density lipoproteins) metabolism, increases free radical formation and reduces plasma antioxidant concentrations. Together, these risk factors support a mechanism for increased LDL circulation time and free radical modification of LDL. Plasma oxycholesterols, hydroxylated metabolites of cholesterol, are carried by oxidized LDL, and elevated lipids in mid-life are associated with increased longterm risk of dementia. Although brain cholesterol metabolism is segregated from the systemic circulation, during oxidative stress, plasma oxycholesterols could have damaging effects on BBB (blood-brain barrier) function and consequently on neuronal cells. Cholesterol-lowering drugs such as statins may prevent the modifications to LDL in mid-life and might show beneficial effects in later life. © The Authors Journal compilation © 2014 Biochemical Society.
Resumo:
Statins are agents widely used to lower LDL-cholesterol (LDL-C) in primary and secondary prevention of coronary heart disease. The five statins available in the UK (simvastatin, pravastatin, fluvastatin, atorvastatin and rosuvastatin) differ in many of their pharmacologic properties. In addition to lowering LDL-C, statins also increase HDL-cholesterol (HDL-C) moderately. There have been rare reports of significant HDL-C decreases in patients commenced on fibrates and when thiazolidinediones are added to fibrates. This is known as a 'paradoxical HDL-C decrease' as both groups of agents usually increase HDL-C. This phenomenon has never been clearly documented following statin therapy. We now describe a patient with type 2 diabetes who showed this paradoxical fall in HDL-C (baseline HDL-C: 1.8 mmol/L; on simvastatin 40 mg HDL-C 0.6 mmol/L; on atorvastatin 20 mg HDL-C 0.9 mmol/L) with a similar decrease in apolipoprotein A1. No similar decrease was observed with pravastatin and rosuvastatin therapy. This phenomenon appeared to be associated with statin treatment and not a statin/fibrate combination. Our patient clearly demonstrated a paradoxical HDL-C fall with simvastatin and atorvastatin, but not pravastatin or rosuvastatin. Simvastatin and atorvastatin share many pharmacokinetic properties such as lipophilicity while pravastatin and rosuvastatin are relatively hydrophilic and are not metabolized by cytochrome P450 3A4. However, these characteristics do not explain the dramatic reductions in HDL-C observed.
Resumo:
The multivariable and progressive natural history of type 2 diabetes limits the effectiveness of available glucose-lowering drugs. Constraints imposed by comorbidities (notably cardiovascular disease and renal impairment) and the need to avoid hypoglycaemia, weight gain, and drug interactions further complicate the treatment process. These challenges have prompted the development of new formulations and delivery methods for existing drugs alongside research into novel pharmacological entities. Advances in incretin-based therapies include a miniature implantable osmotic pump to give continuous delivery of a glucagon-like peptide-1 receptor agonist for 6-12 months and once-weekly tablets of dipeptidyl peptidase-4 inhibitors. Hybrid molecules that combine the properties of selected incretins and other peptides are at early stages of development, and proof of concept has been shown for small non-peptide molecules to activate glucagon-like peptide-1 receptors. Additional sodium-glucose co-transporter inhibitors are progressing in development as well as possible new insulin-releasing biological agents and small-molecule inhibitors of glucagon action. Adiponectin receptor agonists, selective peroxisome proliferator-activated receptor modulators, cellular glucocorticoid inhibitors, and analogues of fibroblast growth factor 21 are being considered as potential new approaches to glucose lowering. Compounds that can enhance insulin receptor and post-receptor signalling cascades or directly promote selected pathways of glucose metabolism have suggested opportunities for future treatments. However, pharmacological interventions that are able to restore normal β-cell function and β-cell mass, normalise insulin action, and fully correct glucose homoeostasis are a distant vision.
Resumo:
Objectives The aim of this work was to investigate the effect of cholesterol on the bilayer loading of drugs and their subsequent release and to investigate fatty alcohols as an alternative bilayer stabiliser to cholesterol. Methods The loading and release rates of four low solubility drugs (diazepam, ibuprofen, midazolam and propofol) incorporated within the bilayer of multilamellar liposomes which contained a range of cholesterol (0–33 mol/mol%) or a fatty alcohol (tetradecanol, hexadecanol and octadecanol) were investigated. The molecular packing of these various systems was also investigated in Langmuir monolayer studies. Key findings Loading and release of drugs within the liposome bilayer was shown to be influenced by their cholesterol content: increasing cholesterol content was shown to reduce drug incorporation and inclusion of cholesterol in the bilayer changed the release profile of propofol from zero-order, for phosphatidyl choline only liposomes, to a first-order model when 11 to 33 total molar % of cholesterol was present in the formulation. At higher bilayer concentrations substitution of cholesterol with tetradecanol was shown to have less of a detrimental impact on bilayer drug loading. However, the presence of cholesterol within the liposome bilayer was shown to reduce drug release compared with fatty alcohols. Monolayer studies undertaken showed that effective mean area per molecule for a 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) : cholesterol mixture deviated by 9% from the predicted area compared with 5% with a similar DSPC : tetradecanol mixture. This evidence, combined with cholesterol being a much more bulky structure, indicated that the condensing influence of tetradecanol was less compared with cholesterol, thus supporting the reduced impact of tetradecanol on drug loading and drug retention. Conclusions Liposomes can be effectively formulated using fatty alcohols as an alternative bilayer stabiliser to cholesterol. The general similarities in the characteristics of liposomes containing fatty alcohols or cholesterol suggest a common behavioural influence for both compounds within the bilayer.
Resumo:
The effect of sodium cholate (NaC; concentration 1-16 mM), a biological surfactant, on the aggregation behavior of 1% (w/v, 2.2 × 10(-3) M) poly(N-isopropylacrylamide) (PNIPAM) aqueous solutions was studied as a function of temperature. From turbidity, dynamic light scattering, viscosity, and fluorescence measurements, it was observed that (i) there is NaC-induced nanoscale aggregation of PNIPAM in its sol state and (ii) the lower critical solution temperature corresponding to sol-gel transition shifts to a lower temperature by about 2 °C.
Resumo:
The selection of appropriate pharmacologic therapy for any disease requires a careful assessment of benefit and risk. In the case of type 2 diabetes, this decision typically balances the benefits accrued from improved glycemic control with the risks inherent in glucose-lowering medications. This review is intended to assist therapeutic decision-making by carefully assessing the potential benefit from improved metabolic control relative to the potential risks of a wide array of currently prescribed glucose-lowering agents. Wherever possible, risks and benefits have been expressed in terms of absolute rates (events per 1000 patient-years) to facilitate cross-study comparisons. The review incorporates data from new studies (Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation, Action to Control Cardiovascular Risk in Diabetes, and the Veterans Affairs Diabetes Trial), as well as safety issues associated with newer glucose-lowering medications. © 2010 Elsevier Inc. All rights reserved.
Resumo:
The immunostimulatory capacities of cationic liposomes are well-documented and are attributed both to inherent immunogenicity of the cationic lipid and more physical capacities such as the formation of antigen depots and antigen delivery. Very few studies have however been conducted comparing the immunostimulatory capacities of different cationic lipids. In the present study we therefore chose to investigate three of the most well-known cationic liposome-forming lipids as potential adjuvants for protein subunit vaccines. The ability of 3ß-[N-(N',N'-dimethylaminoethane)carbomyl] cholesterol (DC-Chol), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP), and dimethyldioctadecylammonium (DDA) liposomes incorporating immunomodulating trehalose dibehenate (TDB) to form an antigen depot at the site of injection (SOI) and to induce immunological recall responses against coadministered tuberculosis vaccine antigen Ag85B-ESAT-6 are reported. Furthermore, physical characterization of the liposomes is presented. Our results suggest that liposome composition plays an important role in vaccine retention at the SOI and the ability to enable the immune system to induce a vaccine specific recall response. While all three cationic liposomes facilitated increased antigen presentation by antigen presenting cells, the monocyte infiltration to the SOI and the production of IFN-? upon antigen recall was markedly higher for DDA and DC-Chol based liposomes which exhibited a longer retention profile at the SOI. A long-term retention and slow release of liposome and vaccine antigen from the injection site hence appears to favor a stronger Th1 immune response.
Resumo:
The activities of many mammalian membrane proteins including G-protein coupled receptors are cholesterol-dependent. Unlike higher eukaryotes, yeast do not make cholesterol. Rather they make a related molecule called ergosterol. As cholesterol and ergosterol are biologically non-equivalent, the potential of yeast as hosts for overproducing mammalian membrane proteins has never been fully realised. To address this problem, we are trying to engineer a novel strain of Saccharomyces cerevisiae in which the cholesterol biosynthetic pathway of mammalian cells has been fully reconstituted. Thus far, we have created a modified strain that makes cholesterol-like sterols which has an increased capacity to make G-protein coupled receptors compared to control yeast.
Resumo:
South Asians have a higher risk of type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD) than white Caucasians, for a given BMI. Premature biological ageing, assessed by reduction in telomere length (TL), may be mediated by factors resulting from altered metabolic profiles associated with obesity. We hypothesise that ethnicity and metabolic status represent detrimental factors contributing to premature biological ageing. Therefore we assessed TL in two South Asian, age and BMI-matched cohorts [T2DM (n = 142) versus non-T2DM (n = 76)] to determine the effects of BMI, gender, lipid and CVD profile on biological ageing. Genomic DNA was obtained from the UKADS cohort; biochemical and anthropometric data was collected and TL was measured by quantitative real-time PCR. Our findings indicated a gender-specific effect with reduced TL in T2DM men compared with non-T2DM men (P = 0.006). Additionally, in T2DM men, TL was inversely correlated with triglycerides and total cholesterol (r = -0.419, P <0.01; r = -0.443, P <0.01). In summary, TL was reduced amongst South Asian T2DM men and correlated with triglycerides and total cholesterol. This study highlights enhanced biological ageing among South Asian, T2DM men, which appears to be tracked by changes in lipids and BMI, suggesting that raised lipids and BMI may directly contribute to premature ageing.
Resumo:
Aims The aims of this study were to examine Type 2 diabetic patients' expectations, perceptions and experiences of oral glucose-lowering agents (OGLAs), including their reasons for taking/not taking these drugs as prescribed and to provide recommendations for developing interventions to improve OGLA adherence. Methods Longitudinal, qualitative study using repeat in-depth interviews with patients (n = 20) over 4 years following clinical diagnosis. Respondents were recruited from primary and secondary care settings across Lothian, Scotland, UK. Results Despite experiences of side-effects, dislikes and concerns about taking multiple drugs and a belief that OGLAs could themselves cause one's diabetes to progress, most respondents appeared motivated to take these drugs as prescribed. This motivation seemed to arise from respondents' experiences of taking OGLAs and observing them to 'work'. Some respondents described feeling better after taking OGLAs, others, typically those who were asymptomatic, used blood glucose self-monitoring and/or glycated haemoglobin results to observe and evidence the effects of their OGLAs. Most respondents demonstrated a 'passive' expectation that health professionals should be responsible for decisions about medications. Hence, non-adherence typically resulted from forgetfulness rather than ambivalence about either medication or consultation style. Respondent concern about OGLA's largely centred upon lack of knowledge about the medication and what to do when doses were missed. Conclusion The findings call for multifaceted strategies to promote adherence. These could include education to address misconceptions and advise patients how to respond to missed doses; reminders to help patients remember to take their drugs; and structured feedback on the impact of OGLAs on glycaemic control.
Resumo:
Cholesterol is an abundant component of mammalian cell membranes and has been extensively studied as an artificial membrane stabilizer in a wide range of phospholipid liposome systems. In this study, the aim was to investigate the role of cholesterol in cationic liposomal adjuvant system based on dimethyldioctadecylammonium (DDA) and trehalose 6,6'-dibehenate (TDB) which has been shown as a strong adjuvant system for vaccines against a wide range of diseases. Packaging of cholesterol within DDA:TDB liposomes was investigated using differential scanning calorimetery and surface pressure-area isotherms of lipid monolayers; incorporation of cholesterol into liposomal membranes promoted the formation of a liquid-condensed monolayer and removed the main phase transition temperature of the system, resulting in an increased bilayer fluidity and reduced antigen retention in vitro. In vivo biodistribution studies found that this increase in membrane fluidity did not alter deposition of liposomes and antigen at the site of injection. In terms of immune responses, early (12 days after immunization) IgG responses were reduced by inclusion of cholesterol; thereafter there were no differences in antibody (IgG, IgG1, IgG2b) responses promoted by DDA:TDB liposomes with and without cholesterol. However, significantly higher levels of IFN-gamma were induced by DDA:TDB liposomes, and liposome uptake by macrophages in vitro was also shown to be higher for DDA:TDB liposomes compared to their cholesterol-containing counterparts, suggesting that small changes in bilayer mechanics can impact both cellular interactions and immune responses. © 2013 American Chemical Society.
Resumo:
The aim of this research was to investigate the molecular interactions occurring in the formulation of non-ionic surfactant based vesicles composed monopalmitoyl glycerol (MPG), cholesterol (Chol) and dicetyl phosphate (DCP). In the formulation of these vesicles, the thermodynamic attributes and surfactant interactions based on molecular dynamics, Langmuir monolayer studies, differential scanning calorimetry (DSC), hot stage microscopy and thermogravimetric analysis (TGA) were investigated. Initially the melting points of the components individually, and combined at a 5:4:1 MPG:Chol:DCP weight ratio, were investigated; the results show that lower (90 C) than previously reported (120-140 C) temperatures could be adopted to produce molten surfactants for the production of niosomes. This was advantageous for surfactant stability; whilst TGA studies show that the individual components were stable to above 200 C, the 5:4:1 MPG:Chol:DCP mixture show ∼2% surfactant degradation at 140 C, compared to 0.01% was measured at 90 C. Niosomes formed at this lower temperature offered comparable characteristics to vesicles prepared using higher temperatures commonly reported in literature. In the formation of niosome vesicles, cholesterol also played a key role. Langmuir monolayer studies demonstrated that intercalation of cholesterol in the monolayer did not occur in the MPG:Chol:DCP (5:4:1 weight ratio) mixture. This suggests cholesterol may support bilayer assembly, with molecular simulation studies also demonstrating that vesicles cannot be built without the addition of cholesterol, with higher concentrations of cholesterol (5:4:1 vs 5:2:1, MPG:Chol:DCP) decreasing the time required for niosome assembly. © 2013 Elsevier B.V.
Resumo:
Although the incretin hormone glucagon-like peptide-1 (GLP-1) is a potent stimulator of insulin release, its rapid degradation in vivo by the enzyme dipeptidyl peptidase IV (DPP IV) greatly limits its potential for treatment of type 2 diabetes. Here, we report two novel Ala8-substituted analogues of GLP-1, (Abu8)GLP-1 and (Val8)GLP-1 which were completely resistant to inactivation by DPP IV or human plasma. (Abu8)GLP-1 and (Val8)GLP-1 exhibited moderate affinities (IC50: 4.76 and 81.1 nM, respectively) for the human GLP-1 receptor compared with native GLP-1 (IC50: 0.37 nM). (Abu8)GLP-1 and (Val8)GLP-1 dose-dependently stimulated cAMP in insulin-secreting BRIN BD11 cells with reduced potency compared with native GLP-1 (1.5- and 3.5-fold, respectively). Consistent with other mechanisms of action, the analogues showed similar, or in the case of (Val8)GLP-1 slightly impaired insulin releasing activity in BRIN BD11 cells. Using adult obese (ob/ob) mice, (Abu8 )GLP-1 had similar glucose-lowering potency to native GLP-1 whereas the action of (Val8)GLP-1 was enhanced by 37%. The in vivo insulin-releasing activities were similar. These data indicate that substitution of Ala8 in GLP-1 with Abu or Val confers resistance to DPP IV inactivation and that (Val8)GLP-1 is a particularly potent N-terminally modified GLP-1 analogue of possible use in type 2 diabetes.