3 resultados para chemoresistant

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue transglutaminase (TG2) has been suggested to be a key player in the progression and metastasis of chemoresistant breast cancer. One of the foremost survival signalling pathways implicated in causing drug resistance in breast cancer is the constitutive activation of NFκB (Nuclear Factor -kappa B) induced by TG2. This study provides a mechanism by which TG2 constitutively activates NFκB which in turn confers chemoresistance to breast cancer cells against doxorubicin. Breast cancer cell lines with varying expression levels of TG2 as well as TG2 null breast cancer cells transfected with TG2 were used as the major cell models for this study. This study made use of cell permeable and impermeable TG2 inhibitors, specific TG2 and Rel A/ p65 targeting siRNA, TG2 functional blocking antibodies, IKK inhibitors and a specific targeting peptide against Rel A/p65 to investigate the pathway of activation involved in the constitutive activation of NFκB by TG2 leading to drug resistance. Crucial to the activation of Rel A/p65 and drug resistance in the breast cancer cells is the interaction between the complex of IκBα and Rel A/p65 with TG2 which results in the dimerization of Rel A/p65 and polymerization of IκBα. The association of TG2 with the IκBα-NFκB complex was determined to be independent of IKKα/β function. The polymerized IκBα is degraded in the cytoplasm by the μ-calpain pathway which allows the cross linked Rel A/ p65 dimers to translocate into the nucleus. Using R283 and ZDON (cell permeable TG2 activity inhibitors) and specific TG2 targeting siRNA, the Rel A/ p65 dimer formation could be inhibited. Co-immunoprecipitation studies confirmed that the phosphorylation of the Rel A/p65 dimers at the Ser536 residue by IKKε took place in the cell nucleus. Importantly, this study also investigated the transcriptional regulation of the TGM2 gene by the pSer536 Rel A/ p65 dimer and the importance of this TG2-NFκB feedback loop in conferring drug resistance to breast cancer cells. This data provides evidence that TG2 could be a key therapeutic target in the treatment of chemoresistant breast cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The polyunsaturated fatty acid (PUFA) requirements of three transplantable murine colon adenocarcinomas, the MAC13, MAC16 and MAC26, were evaluated in vitro and in vivo. When serum concentrations became growth limiting in vitro, proliferation of the MAC13 and MAC26 cell lines was stimulated by linoleic acid (LA) at 18μM and arachidonic acid (AA) at 16 or 33μM respectively. This was not demonstrated by the MAC16 cell line. MAC13 and MAC26 cells were found to be biochemically fatty acid deficient as measured by the formation of Mead acid (20:3 n-9), but the MAC16 cells were not. In vivo the growth of the MAC26 tumour was stimulated by daily oral administration of LA between 0.4-2.0g/kg. There was a threshold value of 0.4g/kg for the stimulation of MAC26 tumour growth, above which there was no further increase in tumour growth, and below which no increase in tumour growth was observed. This increased tumour growth was due to the stimulation of tumour cell proliferation in all areas of the tumour, with no effect on the cell loss factor. The growth of the MAC13, MAC16, and MAC26 cell lines in vitro were more effectively inhibited by lipoxygenase (LO) inhibitors than the cyclooxygenase inhibitor indomethacin. The specific 5-LO inhibitor Zileuton and the leukotriene D4 antagonist L-660,711 were less effective inhibitors of MAC cell growth in vitro than the less specific LO inhibitors BWA4C, BWB70C and CV6504. Studies of the hyroxyeicosatetraenoic acids (HETEs) produced from exogenous AA in these cells, suggested that a balance of eicosanoids produced from 5-LO, 12-LO and 15-LO pathways was required for cell proliferation. In vivo BWA4C, BWB70C and CV6504 demonstrated antitumour action against the MAC26 tumour between 20-50mg/kg/day. CV6504 also inhibited the growth of the MAC 13 tumour in vivo with an optimal effect between 5-10mg/kg/day. The antitumour action against the MAC16 tumour was also accompanied by a reduction in the tumour-induced host body weight loss at 10-25mg/kg/day. The antitumour action of CV6504 in all three tumour models was partially reversed by daily oral administration of 1.0g/kg LA. Studies of the AA metabolism in tumour homogenates suggested that this profound antitumour action, against what are generally chemoresistant tumours, was due to inhibition of eicosanoid production through LO pathways. As a result of these studies, CV6504 has been proposed for stage I./II. clinical trials against pancreatic cancer by the Cancer Research Campaign. This will be the first LO inhibitor entering the clinic as a therapeutic agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most of the gemcitabine (dFdC) resistant cell lines manifested high NF?B activity. The NF?B activity can be induced by dFdC and 5-FU exposure. The chemosensitizing effect of disulfiram (DS), an anti-alcoholism drug and NF?B inhibitor, and copper (Cu) on the chemoresistant cell lines was examined. The DS/Cu complex significantly enhanced the cytotoxicity of dFdC (resistant cells: 12.2–1085-fold) and completely reversed the dFdC resistance in the resitant cell lines. The dFdC-induced NF?B activity was markedly inhibited by DS/Cu complex. The data from this study indicated that DS may be used in clinic to improve the therapeutic effect of dFdC in breast and colon cancer patients.