6 resultados para chemical vapor deposited diamond

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-standing diamond films were grown by DC Arcjet plasma enhanced chemical vapor deposition (CVD). The feed gasses were Ar/H 2/CH 4, in which the flow ratio of CH 4 to H 2 (FCH4/FH2) was varied from 5% to 20%. Two distinct morphologies were observed by scanning electron microscope (SEM), i.e. the pineapple-like morphology and the cauliflower-like morphology. It was found that the morphologies of the as-grown films are strongly dependent on the flow ratio of CH 4 to H 2 in the feed gasses. High resolution transmission electron microscope (HRTEM) survey results revealed that there were nanocrystalline grains within the pineapple-like films whilst there were ultrananocrystalline grains within cauliflower-like films. X-ray diffraction (XRD) results suggested that (110) crystalline plane was the dominant surface in the cauliflower-like films whilst (100) crystalline plane was the dominant surface in the pineapple-like films. Raman spectroscopy revealed that nanostructured carbon features could be observed in both types of films. Plasma diagnosis was carried out in order to understand the morphology dependent growth mechanism. It could be concluded that the film morphology was strongly influenced by the density of gas phases. The gradient of C2 radical was found to be different along the growth direction under the different growth conditions. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogenated amorphous carbon films with diamond like structures have been formed on different substrates at very low energies and temperatures by a plasma enhanced chemical vapor deposition process employing acetylene as the precursor gas. The plasma source was of a cascaded arc type with Ar as carrier gas. The films were grown at very high deposition rates. Deposition on Si, glass and plastic substrates has been studied and the films characterized in terms of sp3 content, roughness, hardness, adhesion and optical properties. Deposition rates up to 20 nm/s have been achieved at substrate temperatures below 100°C. The typical sp3 content of 60-75% in the films was determined by X-ray generated Auger electron spectroscopy. Hardness, reduced modulus and adhesion were measured using a MicroMaterials Nano Test Indenter/Scratch tester. Hardness was found to vary from 4 to 13 GPa depending on deposition conditions. Adhesion was significantly influenced by the substrate temperature and in situ DC cleaning. Hydrogen content in the film was measured by a combination of the Fourier transform infrared and Rutherford backscattering techniques. Advantages of these films are: low ion energy and deposition temperature, very high deposition rates, low capital cost of the equipment and the possibility of film properties being tailored according to the desired application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used microwave plasma enhanced chemical vapor deposition (MPECVD) to carbonize an electrospun polyacrylonitrile (PAN) precursor to form carbon fibers. Scanning electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy were used to characterize the fibers at different evolution stages. It was found that MPECVD-carbonized PAN fibers do not exhibit any significant change in the fiber diameter, whilst conventionally carbonized PAN fibers show a 33% reduction in the fiber diameter. An additional coating of carbon nanowalls (CNWs) was formed on the surface of the carbonized PAN fibers during the MPECVD process without the assistance of any metallic catalysts. The result presented here may have a potential to develop a novel, economical, and straightforward approach towards the mass production of carbon fibrous materials containing CNWs. © 2013 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The features of the Furnace Chemical Vapor Deposition (FCVD) method of manufacturing preforms for special optical fibers are considered. It is shown that misalignment of substrate silica tube and furnace hole axes has a negative effect on the quality of fabricated preforms, leading to angular and radial asymmetry of the refractive index profile. Ways of getting rid of this and other disadvantages of the FCVD method are described. Some advantages of the FCVD method over the MCVD method are shown. It was demonstrated that the FCVD method, despite some drawbacks, allows to manufacture high-quality fiber preforms with good symmetry of the refractive index profile, and thus it is promising for fabrication of dispersion, dispersion varying and active fibers. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the impact of methane concentration in hydrogen plasma on the growth of large-grained polycrystalline diamond (PCD) films and its hydrogen impurity incorporation. The diamond samples were produced using high CH4 concentration in H2 plasma and high power up to 4350 W and high pressure (either 105 or 110 Torr) in a microwave plasma chemical vapor deposition (MPCVD) system. The thickness of the free-standing diamond films varies from 165 µm to 430 µm. Scanning electron microscopy (SEM), micro-Raman spectroscopy and Fourier-transform infrared (FTIR) spectroscopy were used to characterize the morphology, crystalline and optical quality of the diamond samples, and bonded hydrogen impurity in the diamond films, respectively. Under the conditions employed here, when methane concentration in the gas phase increases from 3.75% to 7.5%, the growth rate of the PCD films rises from around 3.0 µm/h up to 8.5 µm/h, and the optical active bonded hydrogen impurity content also increases more than one times, especially the two CVD diamond specific H related infrared absorption peaks at 2818 and 2828 cm−1 rise strongly; while the crystalline and optical quality of the MCD films decreases significantly, namely structural defects and non-diamond carbon phase content also increases a lot with increasing of methane concentration. Based on the results, the relationship between methane concentration and diamond growth rate and hydrogen impurity incorporation including the form of bonded infrared active hydrogen impurity in CVD diamonds was analyzed and discussed. The effect of substrate temperature on diamond growth was also briefly discussed. The experimental findings indicate that bonded hydrogen impurity in CVD diamond films mainly comes from methane rather than hydrogen in the gas source, and thus can provide experimental evidence for the theoretical study of the standard methyl species dominated growth mechanism of CVD diamonds grown with methane/hydrogen mixtures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detonation nanodiamond (DND) is an attractive class of diamond material, which has a great potential to be used for a wide range of applications. In this paper, untreated DND was employed to perform hydrogen passivation process using microwave plasma enhanced chemical vapor deposition in order to investigate the influence of hydrogen-terminated surface on the DND's electrical properties. Impedance spectroscopy (IS) has been used to characterize the electrical properties of DND samples using a newly-developed measurement set-up. It is found that hydrogen-passivation process has increased the electrical conductivity of the DND by up to four orders of magnitude when compared with the untreated sample. An RC parallel equivalent circuit with a Warburg element has been proposed to model the DND's impedance characteristics. © 2012 Elsevier B.V. All rights reserved.