8 resultados para chemical heat treatment

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effectiveness of rapid and controlled heating of intact tissue to inactivate native enzymatic activity and prevent proteome degradation has been evaluated. Mouse brains were bisected immediately following excision, with one hemisphere being heat treated followed by snap freezing in liquid nitrogen while the other hemisphere was snap frozen immediately. Sections were cut by cryostatic microtome and analyzed by MALDI-MS imaging and minimal label 2-D DIGE, to monitor time-dependent relative changes in intensities of protein and peptide signals. Analysis by MALDI-MS imaging demonstrated that the relative intensities of markers varied across a time course (0-5 min) when the tissues were not stabilized by heat treatment. However, the same markers were seen to be stabilized when the tissues were heat treated before snap freezing. Intensity profiles for proteins indicative of both degradation and stabilization were generated when samples of treated and nontreated tissues were analyzed by 2-D DIGE, with protein extracted before and after a 10-min warming of samples. Thus, heat treatment of tissues at the time of excision is shown to prevent subsequent uncontrolled degradation of tissues at the proteomic level before any quantitative analysis, and to be compatible with downstream proteomic analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulsed Nd:YAG has been adopted successfully in welding process of thin (0.7 mm) Ti6Al4V. Laser welding of such thin sheet requires a small focal spot, good laser beam quality and fast travel speed, since too much heat generation can cause distortion for thin sheet weld. The microstructures of Ti6Al4V were complex and strongly affected the mechanical properties. These structures include: a´ martensite, metastable ß, Widmanstätten, bimodal, lamellar and equiaxed microstructure. Bimodal and Widmanstätten structures exhibit a good-balance between strength and ductility. The microstructure of pulsed Nd:YAG welded Ti6Al4V was primarily a´ martensite, which showed the lowest ductility but not significantly high strength. A heat treatment at 950 followed by furnace cooling can transform the microstructure in the weld from a´ martensite structure into Widmanstätten structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fatigue-crack propagation and threshold behaviour of a C-Mn steel containing boron has been investigated at a range of strength levels suitable for mining chain applications. The heat-treatment variables examined include two austenitizing temperatures (900 degree C and 1250 degree C) and a range of tempering treatments from the as-quenched condition to tempering at 400 degree C. In mining applications the haulage chains undergo a 'calibration' process which has the effect of imposing a tensile prestrain on the chain links before they go into service. Prestrain is shown to reduce threshold values in these steels and this behaviour is related to its effects on the residual stress distribution in the test specimens.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of antioxidants and stabilizers on the oxidative degradation of polyolefins (low density polyethylene [LDPE] and polypropylene [PPJ have been studied after subjecting to prior high temperature processing treatments. The changes in the both chemical and physical properties of unstabilized polymers occurring during processing were found to be strongly dependent on the amount of oxygen present in the mixer. Subsequent thermal and photo-oxidation showed very similar characteristics and the chromophore primarily responsible for:both thermo and photooxidative degradation of unstabilized polymers was found to be hydroperoxide formed during processing. Removal of hydroperoxide by heat treatment in an inert atmosphere although increasing ketonic carbonyl concentration, markedly decreased the rate of photo-oxidation, introducing an induction period similar to that of an unprocessed sample. It was concluded that hydroperoxides are the most important initiators in normally processed polymers during the early stages of photo-oxidation. Antioxidants such as metal dithiocarbamates which act by destroying peroxides into non-radica1 products were found to be efficient melt stabilizers for polyolefins and effective UV stabilizers during the initial photo-oxidation stage, whilst a phenolic antioxidant, n-octadecyl-3-(3',5'-di-terbutyl 4'hydroxypheny1) propionate (Irganox 1076) retarded photo-oxidation rate in the later stages. A typical 'UV absorber' 2-hydroxy-4-octyloxy-benzophenone (HOBP) has a minor thermal antioxidant action but retarded photo-oxidation at all stages. A substituated piperidine derivative, Bis [2.2.6.6-tetramethylpiperidlnyl-4] sebacate (Tinuvin 770) behaved as an pro-oxidant during thermal oxidation of polyolefins but was an effective stabilizer against UV light. The UV absorber, HOBP synergised effectively with both peroxide decomposing antioxidants (metal dithiocarbamates) and a chain-breaking antioxidant (Irganox 1076) during photo-oxidation of the poymers studed whereas the combined effect was additive during thermal oxidation. By contrast, the peroxide decornposers and chain-breaking antioxidant (Irganox 1076) which were effective synergists during thermal oxidation of LDPE· were antagonistic during photo-oxidation. The mechanisms of these processes are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Previously, specifications for mechanical properties of casting alloys were based on separately cast test bars. This practice provided consistently reproducible results; thus, any change in conditions was reflected in changes in the mechanical properties of the test coupons. These test specimens, however, did not necessarily reflect the actual mechanical properties of the castings they were supposed to represent'. Factors such as section thickness and casting configuration affect the solidification rate and soundness of the casting thereby raising or lowering its mechanical properties in comparison with separately cast test specimens. In the work now reported, casting shapes were developed to investigate the variations of section thickness, chemical analysis and heat treatment on the mechanical properties of a high strength Aluminium alloy under varying chilling conditions. In addition, an insight was sought into the behaviour of chills under more practical conditions. Finally, it was demonstrated that additional information could be derived from the radiographs which form an essential part of the quality control of premium quality castings. As a result of the work, it is now possible to select analysis and chilling conditions to optimize the as cast and the heat treated mechanical properties of Aluminum 7% Silicon 0.3% Magnesium alloy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It has never been easy for manufacturing companies to understand their confidence level in terms of how accurate and to what degree of flexibility parts can be made. This brings uncertainty in finding the most suitable manufacturing method as well as in controlling their product and process verification systems. The aim of this research is to develop a system for capturing the company’s knowledge and expertise and then reflect it into an MRP (Manufacturing Resource Planning) system. A key activity here is measuring manufacturing and machining capabilities to a reasonable confidence level. For this purpose an in-line control measurement system is introduced to the company. Using SPC (Statistical Process Control) not only helps to predict the trend in manufacturing of parts but also minimises the human error in measurement. Gauge R&R (Repeatability and Reproducibility) study identifies problems in measurement systems. Measurement is like any other process in terms of variability. Reducing this variation via an automated machine probing system helps to avoid defects in future products.Developments in aerospace, nuclear, oil and gas industries demand materials with high performance and high temperature resistance under corrosive and oxidising environments. Superalloys were developed in the latter half of the 20th century as high strength materials for such purposes. For the same characteristics superalloys are considered as difficult-to-cut alloys when it comes to formation and machining. Furthermore due to the sensitivity of superalloy applications, in many cases they should be manufactured with tight tolerances. In addition superalloys, specifically Nickel based, have unique features such as low thermal conductivity due to having a high amount of Nickel in their material composition. This causes a high surface temperature on the work-piece at the machining stage which leads to deformation in the final product.Like every process, the material variations have a significant impact on machining quality. The main cause of variations can originate from chemical composition and mechanical hardness. The non-uniform distribution of metal elements is a major source of variation in metallurgical structures. Different heat treatment standards are designed for processing the material to the desired hardness levels based on application. In order to take corrective actions, a study on the material aspects of superalloys has been conducted. In this study samples from different batches of material have been analysed. This involved material preparation for microscopy analysis, and the effect of chemical compositions on hardness (before and after heat treatment). Some of the results are discussed and presented in this paper.