6 resultados para charged particle Brownian motion

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This investigation originated from work by Dr. A.H. McIlraith of the National Physical Laboratory who, in 1966, described a new type of charged particle oscillator. This makes use of two equal cylindrical electrodes to constrain the particles in such a way that they follow extremely long oscillatory paths between the electrodes under the influence of an electrostatic field alone. The object of this work has been to study the principle of the oscillator in detail and to investigate its properties and applications. Any device which is capable of creating long electron trajectories has potential application in the field of ultra high vacuum technology. It was therefore considered that a critical review of the problems associated with the production and measurement of ultra high vacuum was relevant in the initial stages of the work. The oscillator has been applied with a considerable degree of success as a high energy electrostatic ion source. This offers several advantages over existing ion sources. It can be operated at much lower pressures without the need of a magnetic field. The oscillator principle has also been applied as a thermionic ionization gauge and has been compared with other ionization gauges to pressures as low as 5 x 10- 11 torr.. This new gauge exhibited a number of advantages over most of the existing gauges. Finally the oscillator has been used in an evaporation ion pump and has exhibited fairly high pumping speeds for argon gas relative to those for nitrogen. This investigation supports the original work of Dr. A.H. McIlraith and shows that his proposed oscillator has considerable potential in the fields of vacuum technology and electron physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We extract the distribution of both center-of-mass and angular fluctuations from three-dimensional tracking of optically trapped nanotubes. We measure the optical force and torque constants from autocorrelation and cross-correlation of the tracking signals. This allows us to isolate the angular Brownian motion. We demonstrate that nanotubes enable nanometer spatial and femtonewton force resolution in photonic force microscopy, the smallest to date. This has wide implications in nanotechnology, biotechnology, nanofluidics, and material science.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fluid – particle interaction inside a 41.7 mg s-1 fluidised bed reactor is modelled. Three char particles of sizes 500 µm, 250 µm, and 100 µm are injected into the fluidised bed and the momentum transport from the fluidising gas and fluidised sand is modelled. Due to the fluidising conditions and reactor design the char particles will either be entrained from the reactor or remain inside the bubbling bed. The particle size is the factor that differentiates the particle motion inside the reactor and their efficient entrainment out of it. A 3-Dimensional simulation has been performed with a completele revised momentum transport model for bubble three-phase flow according to the literature as an extension to the commercial finite volume code FLUENT 6.2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fluid–particle interaction and the impact of different heat transfer conditions on pyrolysis of biomass inside a 150 g/h fluidised bed reactor are modelled. Two different size biomass particles (350 µm and 550 µm in diameter) are injected into the fluidised bed. The different biomass particle sizes result in different heat transfer conditions. This is due to the fact that the 350 µm diameter particle is smaller than the sand particles of the reactor (440 µm), while the 550 µm one is larger. The bed-to-particle heat transfer for both cases is calculated according to the literature. Conductive heat transfer is assumed for the larger biomass particle (550 µm) inside the bed, while biomass–sand contacts for the smaller biomass particle (350 µm) were considered unimportant. The Eulerian approach is used to model the bubbling behaviour of the sand, which is treated as a continuum. Biomass reaction kinetics is modelled according to the literature using a two-stage, semi-global model which takes into account secondary reactions. The particle motion inside the reactor is computed using drag laws, dependent on the local volume fraction of each phase. FLUENT 6.2 has been used as the modelling framework of the simulations with the whole pyrolysis model incorporated in the form of User Defined Function (UDF).