2 resultados para chamber
em Aston University Research Archive
Resumo:
Background Evaluation of anterior chamber depth (ACD) can potentially identify those patients at risk of angle-closure glaucoma. We aimed to: compare van Herick’s limbal chamber depth (LCDvh) grades with LCDorb grades calculated from the Orbscan anterior chamber angle values; determine Smith’s technique ACD and compare to Orbscan ACD; and calculate a constant for Smith’s technique using Orbscan ACD. Methods Eighty participants free from eye disease underwent LCDvh grading, Smith’s technique ACD, and Orbscan anterior chamber angle and ACD measurement. Results LCDvh overestimated grades by a mean of 0.25 (coefficient of repeatability [CR] 1.59) compared to LCDorb. Smith’s technique (constant 1.40 and 1.31) overestimated ACD by a mean of 0.33 mm (CR 0.82) and 0.12 mm (CR 0.79) respectively, compared to Orbscan. Using linear regression, we determined a constant of 1.22 for Smith’s slit-length method. Conclusions Smith’s technique (constant 1.31) provided an ACD that is closer to that found with Orbscan compared to a constant of 1.40 or LCDvh. Our findings also suggest that Smith’s technique would produce values closer to that obtained with Orbscan by using a constant of 1.22.
Resumo:
PURPOSE - To compare posterior vitreous chamber shape in myopia to that in emmetropia. METHODS - Both eyes of 55 adult subjects were studied, 27 with emmetropia (MSE =-0.55; <+0.75D; mean +0.09 ±0.36D) and 28 with myopia (MSE -5.87 ±2.31D). Cycloplegic refraction was measured with a Shin Nippon autorefractor and anterior chamber depth and axial length with a Zeiss IOLMaster. Posterior vitreous chamber shapes were determined from T2-weighted MRI (3-Tesla) using procedures previously reported by our laboratory. 3-D surface model coordinates were assigned to nasal, temporal, superior and inferior quadrants and plotted in 2-D to illustrate the composite shape of respective quadrants posterior to the second nodal point. Spherical analogues of chamber shape were constructed to compare relative sphericity between refractive groups and quadrants. RESULTS - Differences in shape occurred in the region posterior to points of maximum globe width and were thus in general accord with an equatorial model of myopic expansion. Shape in emmetropia is categorised distinctly as that of an oblate ellipse and in myopia as an oblate ellipse of significantly less degree such that it approximates to a sphere. There was concordance between shape and retinotopic projection of respective quadrants into right, left, superior and inferior visual fields. CONCLUSIONS - The transition in shape from oblate ellipse to sphere with axial elongation supports the hypothesis that myopia may be a consequence of equatorial restriction associated with biomechanical anomalies of the ciliary apparatus. The synchronisation of quadrant shapes with retinotopic projection suggests that binocular growth is coordinated by processes that operate beyond the optic chiasm.