15 resultados para cell level
em Aston University Research Archive
Resumo:
B-ISDN is a universal network which supports diverse mixes of service, applications and traffic. ATM has been accepted world-wide as the transport technique for future use in B-ISDN. ATM, being a simple packet oriented transfer technique, provides a flexible means for supporting a continuum of transport rates and is efficient due to possible statistical sharing of network resources by multiple users. In order to fully exploit the potential statistical gain, while at the same time provide diverse service and traffic mixes, an efficient traffic control must be designed. Traffic controls which include congestion and flow control are a fundamental necessity to the success and viability of future B-ISDN. Congestion and flow control is difficult in the broadband environment due to the high speed link, the wide area distance, diverse service requirements and diverse traffic characteristics. Most congestion and flow control approaches in conventional packet switched networks are reactive in nature and are not applicable in the B-ISDN environment. In this research, traffic control procedures mainly based on preventive measures for a private ATM-based network are proposed and their performance evaluated. The various traffic controls include CAC, traffic flow enforcement, priority control and an explicit feedback mechanism. These functions operate at call level and cell level. They are carried out distributively by the end terminals, the network access points and the internal elements of the network. During the connection set-up phase, the CAC decides the acceptance or denial of a connection request and allocates bandwidth to the new connection according to three schemes; peak bit rate, statistical rate and average bit rate. The statistical multiplexing rate is based on a `bufferless fluid flow model' which is simple and robust. The allocation of an average bit rate to data traffic at the expense of delay obviously improves the network bandwidth utilisation.
Resumo:
In psychophysics, cross-orientation suppression (XOS) and cross-orientation facilitation (XOF) have been measured by investigating mask configuration on the detection threshold of a centrally placed patch of sine-wave grating. Much of the evidence for XOS and XOF comes from studies using low and high spatial frequencies, respectively, where the interactions are thought to arise from within (XOS) and outside (XOF) the footprint of the classical receptive field. We address the relation between these processes here by measuring the effects of various sizes of superimposed and annular cross-oriented masks on detection thresholds at two spatial scales (1 and 7 c/deg) and on contrast increment thresholds at 7 c/deg. A functional model of our results indicates the following (1) XOS and XOF both occur for superimposed and annular masks. (2) XOS declines with spatial frequency but XOF does not. (3) The spatial extent of the interactions does not scale with spatial frequency, meaning that surround-effects are seen primarily at high spatial frequencies. (4) There are two distinct processes involved in XOS: direct divisive suppression and modulation of self-suppression. (5) Whether XOS or XOF wins out depends upon their relative weights and mask contrast. These results prompt enquiry into the effect of spatial frequency at the single-cell level and place new constraints on image-processing models of early visual processing. © ARVO.
Resumo:
This research is focused on the optimisation of resource utilisation in wireless mobile networks with the consideration of the users’ experienced quality of video streaming services. The study specifically considers the new generation of mobile communication networks, i.e. 4G-LTE, as the main research context. The background study provides an overview of the main properties of the relevant technologies investigated. These include video streaming protocols and networks, video service quality assessment methods, the infrastructure and related functionalities of LTE, and resource allocation algorithms in mobile communication systems. A mathematical model based on an objective and no-reference quality assessment metric for video streaming, namely Pause Intensity, is developed in this work for the evaluation of the continuity of streaming services. The analytical model is verified by extensive simulation and subjective testing on the joint impairment effects of the pause duration and pause frequency. Various types of the video contents and different levels of the impairments have been used in the process of validation tests. It has been shown that Pause Intensity is closely correlated with the subjective quality measurement in terms of the Mean Opinion Score and this correlation property is content independent. Based on the Pause Intensity metric, an optimised resource allocation approach is proposed for the given user requirements, communication system specifications and network performances. This approach concerns both system efficiency and fairness when establishing appropriate resource allocation algorithms, together with the consideration of the correlation between the required and allocated data rates per user. Pause Intensity plays a key role here, representing the required level of Quality of Experience (QoE) to ensure the best balance between system efficiency and fairness. The 3GPP Long Term Evolution (LTE) system is used as the main application environment where the proposed research framework is examined and the results are compared with existing scheduling methods on the achievable fairness, efficiency and correlation. Adaptive video streaming technologies are also investigated and combined with our initiatives on determining the distribution of QoE performance across the network. The resulting scheduling process is controlled through the prioritization of users by considering their perceived quality for the services received. Meanwhile, a trade-off between fairness and efficiency is maintained through an online adjustment of the scheduler’s parameters. Furthermore, Pause Intensity is applied to act as a regulator to realise the rate adaptation function during the end user’s playback of the adaptive streaming service. The adaptive rates under various channel conditions and the shape of the QoE distribution amongst the users for different scheduling policies have been demonstrated in the context of LTE. Finally, the work for interworking between mobile communication system at the macro-cell level and the different deployments of WiFi technologies throughout the macro-cell is presented. A QoEdriven approach is proposed to analyse the offloading mechanism of the user’s data (e.g. video traffic) while the new rate distribution algorithm reshapes the network capacity across the macrocell. The scheduling policy derived is used to regulate the performance of the resource allocation across the fair-efficient spectrum. The associated offloading mechanism can properly control the number of the users within the coverages of the macro-cell base station and each of the WiFi access points involved. The performance of the non-seamless and user-controlled mobile traffic offloading (through the mobile WiFi devices) has been evaluated and compared with that of the standard operator-controlled WiFi hotspots.
Resumo:
Signal integration determines cell fate on the cellular level, affects cognitive processes and affective responses on the behavioural level, and is likely to be involved in psychoneurobiological processes underlying mood disorders. Interactions between stimuli may subjected to time effects. Time-dependencies of interactions between stimuli typically lead to complex cell responses and complex responses on the behavioural level. We show that both three-factor models and time series models can be used to uncover such time-dependencies. However, we argue that for short longitudinal data the three factor modelling approach is more suitable. In order to illustrate both approaches, we re-analysed previously published short longitudinal data sets. We found that in human embryonic kidney 293 cells cells the interaction effect in the regulation of extracellular signal-regulated kinase (ERK) 1 signalling activation by insulin and epidermal growth factor is subjected to a time effect and dramatically decays at peak values of ERK activation. In contrast, we found that the interaction effect induced by hypoxia and tumour necrosis factor-alpha for the transcriptional activity of the human cyclo-oxygenase-2 promoter in HEK293 cells is time invariant at least in the first 12-h time window after stimulation. Furthermore, we applied the three-factor model to previously reported animal studies. In these studies, memory storage was found to be subjected to an interaction effect of the beta-adrenoceptor agonist clenbuterol and certain antagonists acting on the alpha-1-adrenoceptor / glucocorticoid-receptor system. Our model-based analysis suggests that only if the antagonist drug is administer in a critical time window, then the interaction effect is relevant.
Resumo:
Microbial transglutaminase (mTGase) is an enzyme that introduces a covalent bond between peptide bound glutamine and lysine residues. Proteins cross-linked in this manner are often more resistant to proteolytic degradation and show increased tensile strength. This study evaluates the effects of mTGase mediated cross-linking of collagen on the cellular morphology, behaviour and viability of murine 3T3 fibroblasts following their seeding into collagen scaffolds. Additionally, cell mediated scaffold contraction, porosity and level of cross-linking of the scaffold has been analysed using image analysis software, scanning electron microscopy (SEM), colorimetric assays, and Fourier transform infrared spectroscopy (FTIR). We demonstrate that the biocompatibility and cellular morphology, when comparing cultures of fibroblasts integrated in mTGase cross-linked collagen scaffolds with the native collagen counterparts, remained unaffected. It has been also elicited that the structural characteristics of collagen have been preserved while introducing enzymatically resistant covalent bonds.
Resumo:
The human NT2.D1 cell line was differentiated to form both a 1:2 co-culture of post-mitotic NT2 neuronal and NT2 astrocytic (NT2.N/A) cells and a pure NT2.N culture. The respective sensitivities to several test chemicals of the NT2.N/A, the NT2.N, and the NT2.D1 cells were evaluated and compared with the CCF-STTG1 astrocytoma cell line, using a combination of basal cytotoxicity and biochemical endpoints. Using the MTT assay, the basal cytotoxicity data estimated the comparative toxicities of the test chemicals (chronic neurotoxin 2,5-hexanedione, cytotoxins 2,3- and 3,4-hexanedione and acute neurotoxins tributyltin- and trimethyltin- chloride) and also provided the non-cytotoxic concentration-range for each compound. Biochemical endpoints examined over the non-cytotoxic range included assays for ATP levels, oxidative status (H2O2 and GSH levels) and caspase-3 levels as an indicator of apoptosis. although the endpoints did not demonstrate the known neurotoxicants to be consistently more toxic to the cell systems with the greatest number of neuronal properties, the NT2 astrocytes appeared to contribute positively to NT2 neuronal health following exposure to all the test chemicals. The NT2.N/A co-culture generally maintained superior ATP and GSH levels and reduced H2O2 levels in comparison with the NT2.N mono-culture. In addition, the pure NT2.N culture showed a significantly lower level of caspase-3 activation compared with the co-culture, suggesting NT2 astrocytes may be important in modulating the mode of cell death following toxic insult. Overall, these studies provide evidence that an in vitro integrated population of post-mitotic human neurons and astrocytes may offer significant relevance to the human in vivo heterogeneous nervous system, when initially screening compounds for acute neurotoxic potential.
Resumo:
Obesity is an established risk factor for type 2 diabetes. Activation of the adiponectin receptors has a clear role in improving insulin resistance although conflicting evidence exists for its effects on pancreatic beta-cells. Previous reports have identified both adiponectin receptors (ADR-1 and ADR-2) in the beta-cell. Recent evidence has suggested that two distinct regions of the adiponectin molecule, the globular domain and a small N-terminal region, have agonist properties. This study investigates the effects of two agonist regions of adiponectin on insulin secretion, gene expression, cell viability and cell signalling in the rat beta-cell line BRIN-BD11, as well as investigating the expression levels of adiponectin receptors (ADRs) in these cells. Cells were treated with globular adiponectin and adiponectin (15-36) +/-leptin to investigate cell viability, expression of key beta-cell genes and ERK1/2 activation. Both globular adiponectin and adiponectin (15-36) caused significant ERK1/2 dependent increases in cell viability. Leptin co-incubation attenuated adiponectin (15-36) but not globular adiponectin induced cell viability. Globular adiponectin, but not adiponectin (15-36), caused a significant 450% increase in PDX-1 expression and a 45% decrease in LPL expression. ADR-1 was expressed at a higher level than ADR-2, and ADR mRNA levels were differentially regulated by non-esterified fatty acids and peroxisome-proliferator-activated receptor agonists. These data provide evidence of roles for two distinct adiponectin agonist domains in the beta-cell and confirm the potentially important role of adiponectin receptor agonism in maintaining beta-cell mass.
Resumo:
Regular aspirin intake is associated with a reduction in the incidence of colorectal cancer. Aspirin has been shown to be cytotoxic to colorectal cancer cells in vitro. The molecular basis for this cytotoxicity is controversial, with a number of competing hypotheses in circulation. One suggestion is that the protective effect is related to the induction of expression of the DNA mismatch repair (MMR) proteins hMLH1, hMSH2, hMSH6 and hPMS2 in DNA MMR proficient cells. We report that treatment of the DNA MMR competent/p53 mutant colorectal cancer cell line SW480 with 1 mM aspirin for 48 h caused changes in mRNA expression of several key genes involved in DNA damage signalling pathways, including a significant down-regulation in transcription of the genes ATR, BRCA1 and MAPK12. Increases in the transcription of XRCC3 and GADD45alpha genes are also reported. Regulation of these genes could potentially have profound effects on colorectal cancer cells and may play a role in the observed chemo-protective effect of aspirin in vivo. Although a correlation was not seen between transcript and protein levels of ATR, BRCA1 and GADD45alpha, an increase in XRCC3 encoded protein expression upon aspirin treatment in SW480 cells was observed by immunoblotting, immunofluorescence and immunohistochemical analysis. This is the first report of XRCC3 gene transcription and encoded protein expression being susceptible to exposure to the non-steroidal anti-inflammatory drug, aspirin. Furthermore, this study indicates that alterations in gene transcription seen in microarray studies must be verified at the protein level.
Resumo:
The importance of S100A4, a Ca2+-binding protein, in mediating tumour cell migration, both intracellularly and extracellularly, is well documented. Tissue transglutaminase (TG2) a Ca2+-dependent protein crosslinking enzyme, has also been shown to enhance cell migration. Here by using the well characterised non-metastatic rat mammary R37 cells (transfected with empty vector) and highly metastatic KP1 cells (R37 cells transfected with S100A4), we demonstrate that inhibition of TG2 either by TG2 inhibitors or transfection of cells with TG2 shRNA block S100A4-accelerated cell migration in the KP1cells and in R37 cells treated with exogenous S100A4. Cell migration was also blocked by the treatment with the non-cell permeabilizing TG2 inhibitor R294, in the human breast cancer cell line MDA-MB-231 (Clone 16, which has a high level of TG2 expression). Inhibition was paralleled by a decrease in S100A4 polymer formation. co-immunoprecipitation and Far Western blotting assays and cross-linking assays showed not only the direct interaction between TG2 and S100A4, but also confirmed S100A4 as a substrate for TG2. Using specific functional blocking antibodies, a targeting peptide and a recombinant protein as a competitive treatment, we revealed the involvement of syndecan-4 and a5ß1 integrin co-signalling pathways linked by activation of PKCa in this TG2 and S100A4-mediated cell migration. We propose a mechanism for TG2-regulated S100A4-related mediated cell migration, which is dependent on TG2 crosslinking.
Resumo:
Astrocytes are essential for neuronal function and survival, so both cell types were included in a human neurotoxicity test-system to assess the protective effects of astrocytes on neurons, compared with a culture of neurons alone. The human NT2.D1 cell line was differentiated to form either a co-culture of post-mitotic NT2.N neuronal (TUJ1, NF68 and NSE positive) and NT2.A astrocytic (GFAP positive) cells (∼2:1 NT2.A:NT2.N), or an NT2.N mono-culture. Cultures were exposed to human toxins, for 4 h at sub-cytotoxic concentrations, in order to compare levels of compromised cell function and thus evidence of an astrocytic protective effect. Functional endpoints examined included assays for cellular energy (ATP) and glutathione (GSH) levels, generation of hydrogen peroxide (H2O2) and caspase-3 activation. Generally, the NT2.N/A co-culture was more resistant to toxicity, maintaining superior ATP and GSH levels and sustaining smaller significant increases in H2O2 levels compared with neurons alone. However, the pure neuronal culture showed a significantly lower level of caspase activation. These data suggest that besides their support for neurons through maintenance of ATP and GSH and control of H2O2 levels, following exposure to some substances, astrocytes may promote an apoptotic mode of cell death. Thus, it appears the use of astrocytes in an in vitro predictive neurotoxicity test-system may be more relevant to human CNS structure and function than neuronal cells alone. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
We examined satellite cell content and the activity of satellite cell progeny in tibialis anterior muscles of young (15 weeks) and aging (101 weeks) Brown Norway (BN) rats, after they were exposed for 50 days to a standardized and highly reproducible regime of chronic low-frequency electrical stimulation. Chronic low-frequency electrical stimulation was successful in inducing fast-to-slow fiber-type transformation, characterized by a 2.3-fold increase in the proportion of IIA fibers and fourfold and sevenfold decreases in the proportion of IID/X and IIB fibers in both young and aging BN rats. These changes were accompanied by a twofold increase in the satellite cell content in both the young and aging groups; satellite cell content reached a level that was significantly higher in the young group (p < .04). The total muscle precursor cell content (i.e., satellite cells plus progeny), however, did not differ between groups, because there was a greater number of satellite cell progeny passing through the proliferative and differentiative compartments of the aging group. The resulting 1.5-fold increase in myonuclear content was similar in the young and aging groups. We conclude that satellite cells and satellite cell progeny of aging BN rats possess an unaltered capacity to contribute to the adaptive response.
Resumo:
Background: Sickle cell disease impacts the physical, emotional and psychological aspects of life of the affected persons, often times exposing them to disease associated stigma from the society and alters the health related quality of life (HRQoL). This study compared the HRQoL of adolescents with sickle cell disease with their healthy peers, identified socio-demographic and clinical factors impacting HRQoL, and determined the extent and effects of SCD related stigma on quality of life. Procedure: We conducted a cross-sectional survey among 160 adolescents, 80 with SCD and 80 adolescents without SCD. Socio-demographic and clinical data were collected using a pre-tested questionnaire. HRQoL was investigated using the Short Form (SF-36v2) Health Survey. SCD perceived stigma was measured using an adaptation of a perceived stigma questionnaire. Results: Adolescents with SCD have significantly worse HRQoL than their peers in all of the most important dimensions of HRQoL (physical functioning, physical roles limitation, emotional roles limitation, social functioning, bodily pain, vitality and general health perception) except mental health. Recent hospital admission and SCD related complication further lowered HRQoL scores. Over seventy percent of adolescents with SCD have moderate to high level of perception of stigmatisation. Hospitalisation, SCD complication, SCD stigma were inversely, and significantly associated with HRQoL. Conclusions: Adolescents living with SCD in Nigeria have lower health related quality of life compared to their healthy peers. They also experience stigma that impacts their HRQoL. Complications of SCD and hospital admissions contribute significantly to this impairment. Pediatr Blood Cancer 2015;62:1245-1251.
Resumo:
Background aims: The cost-effective production of human mesenchymal stromal cells (hMSCs) for off-the-shelf and patient specific therapies will require an increasing focus on improving product yield and driving manufacturing consistency. Methods: Bone marrow-derived hMSCs (BM-hMSCs) from two donors were expanded for 36 days in monolayer with medium supplemented with either fetal bovine serum (FBS) or PRIME-XV serum-free medium (SFM). Cells were assessed throughout culture for proliferation, mean cell diameter, colony-forming potential, osteogenic potential, gene expression and metabolites. Results: Expansion of BM-hMSCs in PRIME-XV SFM resulted in a significantly higher growth rate (P < 0.001) and increased consistency between donors compared with FBS-based culture. FBS-based culture showed an inter-batch production range of 0.9 and 5 days per dose compared with 0.5 and 0.6 days in SFM for each BM-hMSC donor line. The consistency between donors was also improved by the use of PRIME-XV SFM, with a production range of 0.9 days compared with 19.4 days in FBS-based culture. Mean cell diameter has also been demonstrated as a process metric for BM-hMSC growth rate and senescence through a correlation (R2 = 0.8705) across all conditions. PRIME-XV SFM has also shown increased consistency in BM-hMSC characteristics such as per cell metabolite utilization, in vitro colony-forming potential and osteogenic potential despite the higher number of population doublings. Conclusions: We have increased the yield and consistency of BM-hMSC expansion between donors, demonstrating a level of control over the product, which has the potential to increase the cost-effectiveness and reduce the risk in these manufacturing processes.
Resumo:
A prerequisite for vaccine-mediated induction of CD8+ T-cell responses is the targeting of dendritic cell (DC) subsets specifically capable of cross-presenting antigen epitopes to CD8+ T cells. Administration of a number of cationic adjuvants via the intraperitoneal (i.p.) route has been shown to result in strong CD8+ T-cell responses, whereas immunization via e.g. the intramuscular (i.m.) or subcutaneous (s.c.) routes often stimulate weak CD8+ T-cell responses. The hypothesis for this is that self-drainage of the adjuvant/antigen to the lymphoid organs, which takes place upon i.p. immunization, is required for the subsequent activation of cross-presenting lymphoid organ-resident CD8α+ DCs. In contrast, s.c. or i.m. immunization usually results in the formation of a depot at the site of injection (SOI), which hinders the self-drainage and targeting of the vaccine to cross-presenting CD8α+ DCs. We investigated this hypothesis by correlating the biodistribution pattern and the adjuvanticity of the strong CD8+ T-cell inducing liposomal cationic adjuvant formulation 09 (CAF09), which is composed of dimethyldioctadecylammonium bromide/monomycoloyl glycerol liposomes with polyinosinic:polycytidylic acid electrostatically adsorbed to the surface. Biodistribution studies with radiolabeled CAF09 and a surface-adsorbed model antigen [ovalbumin (OVA)] showed that a significantly larger fraction of the vaccine dose localized in the draining lymph nodes (dLNs) and the spleen 6 h after i.p. immunization, as compared to after i.m. immunization. Studies with fluorescently labelled OVA + CAF09 demonstrated a preferential association of OVA + CAF09 to DCs/monocytes, as compared to macrophages and B cells, following i.p. immunization. Administration of OVA + CAF09 via the i.p. route did also result in DC activation, whereas no DC activation could be measured within the same period with unadjuvanted OVA and OVA + CAF09 administered via the s.c. or i.m. routes. In the dLNs, the highest level of activated, cross-presenting CD8α+ DCs was detected at 24 h post immunization, whereas an influx of activated, migrating and cross-presenting CD103+ DCs to the dLNs could be measured after 48 h. This suggests that the CD8α+ DCs are activated by self-draining OVA + CAF09 in the lymphoid organs, whereas the CD103+ DCs are stimulated by the OVA + CAF09 at the SOI. These results support the hypothesis that the self-drainage of OVA + CAF09 to the draining LNs is required for the activation of CD8α+ DCs, while the migratory CD103+ DCs may play a role in sustaining the subsequent induction of strong CD8+ T-cell responses.
Resumo:
Red blood cells (RBCs) are key players in systemic oxygen transport. RBCs respond to in vitro hypoxia through the so-called oxygen-dependent metabolic regulation, which involves the competitive binding of deoxyhemoglobin and glycolytic enzymes to the N-terminal cytosolic domain of band 3. This mechanism promotes the accumulation of 2,3-DPG, stabilizing the deoxygenated state of hemoglobin, and cytosol acidification, triggering oxygen off-loading through the Bohr effect. Despite in vitro studies, in vivo adaptations to hypoxia have not yet been completely elucidated. Within the framework of the AltitudeOmics study, erythrocytes were collected from 21 healthy volunteers at sea level, after exposure to high altitude (5260m) for 1, 7 and 16days, and following reascent after 7days at 1525m. UHPLC-MS metabolomics results were correlated to physiological and athletic performance parameters. Immediate metabolic adaptations were noted as early as a few hours from ascending to >5000m, and maintained for 16 days at high altitude. Consistent with the mechanisms elucidated in vitro, hypoxia promoted glycolysis and deregulated the pentose phosphate pathway, as well purine catabolism, glutathione homeostasis, arginine/nitric oxide and sulphur/H2S metabolism. Metabolic adaptations were preserved one week after descent, consistently with improved physical performances in comparison to the first ascendance, suggesting a mechanism of metabolic memory.