242 resultados para cascaded long-period fiber gratings (CLPFG)
em Aston University Research Archive
Resumo:
We describe long-period grating inscription in hydrogenated telecom fibers by use of high-intensity femto-second 352 nm laser pulses. We show that this technique allows us to fabricate high-quality 30 dB gratings of 300 μm period and 2 cm length by use of a three-photon absorption mechanism. © 2005 Optical Society of America.
Resumo:
We have experimentally investigated the mode dispersion property and refractive index sensitivity of dual-peak long-period fiber gratings (LPGs) that were sensitized by hydrofluoric acid (HF) etching. The nature of the coupled cladding modes close to the dispersion turning point makes the dual-peak LPGs ultrasensitive to cladding property, permitting a fine tailoring of the mode dispersion and index sensitivity by the light cladding etching method using HF acid of only 1% concentration. As an implementation of an optical biosensor, the etched device was used to detect the concentration of hemoglobin protein in a sugar solution, showing a sensitivity as high as 20 nm/1%.
Resumo:
A novel implementation of an optical chemsensor device is reported based on long-period fiber grating structures ultraviolet-inscribed in D-fiber, with sensitivity enhancement by cladding etching. The results of a comparative study using D-fiber devices and similar structures in standard optical fiber reveal that the D-fiber devices offer substantially greater sensitivity both with and without etching. Based on a calibrated response to changes in refractive index, the grating devices have been used to measure the concentrations of aqueous sugar solutions, demonstrating the potential capability to detect concentration changes as small as 0.2%.
Resumo:
A novel implementation of an optical chemsensor device is reported based on long-period fiber grating structures ultraviolet-inscribed in D-fiber, with sensitivity enhancement by cladding etching. The results of a comparative study using D-fiber devices and similar structures in standard optical fiber reveal that the D-fiber devices offer substantially greater sensitivity both with and without etching. Based on a calibrated response to changes in refractive index, the grating devices have been used to measure the concentrations of aqueous sugar solutions, demonstrating the potential capability to detect concentration changes as small as 0.2%.
Resumo:
We have experimentally investigated the mode dispersion property and refractive index sensitivity of dual-peak long-period fiber gratings (LPGs) that were sensitized by hydrofluoric acid (HF) etching. The nature of the coupled cladding modes close to the dispersion turning point makes the dual-peak LPGs ultrasensitive to cladding property, permitting a fine tailoring of the mode dispersion and index sensitivity by the light cladding etching method using HF acid of only 1% concentration. As an implementation of an optical biosensor, the etched device was used to detect the concentration of hemoglobin protein in a sugar solution, showing a sensitivity as high as 20 nm/1%. © 2007 Optical Society of America.
Resumo:
An application of long-period fiber gratings (fabricated in standard fiber) as bend sensors is reported. A simple model, taking account of the strain and compression in the fiber cladding, is used to calculate the splitting of the cladding modes and is found to be in excellent agreement with the experimental results. Over 80 nm resonance splitting was observed under a 5.6 m-1 bend curvature giving a bend sensitivity of 14.5 nm/(m-1), the best obtained data so far. © 2001 Elsevier Science B.V.
Resumo:
The use of near infrared, high intensity femtosecond laser pulses for the inscription of long period fiber gratings in photonic crystal fiber is reported. The formation of grating structures in photonic crystal fiber is complicated by the fiber structure that allows wave-guidance but that impairs and scatters the femtosecond inscription beam. The effects of symmetric and asymmetric femtosecond laser inscriptions are compared and the polarization characteristics of long period gratings and their responses to external perturbations are reported.
Resumo:
The use of near infrared, high intensity femtosecond laser pulses for the inscription of long period fiber gratings in photonic crystal fiber is reported. The formation of grating structures in photonic crystal fiber is complicated by the fiber structure that allows wave-guidance but that impairs and scatters the femtosecond inscription beam. The effects of symmetric and asymmetric femtosecond laser inscriptions are compared and the polarization characteristics of long period gratings and their responses to external perturbations are reported.
Resumo:
We report an investigation of thermal properties of long-period fiber gratings (LPFGs) of various periods fabricated in the conventional B-Ge codoped fiber. It has been found that the temperature sensitivity of the LPFGs produced in the B-Ge fiber can be significantly enhanced as compared with the standard telecom fiber. A total of 27.5-nm spectral shift was achieved from only 10 °C change in temperature for an LPFG with 240-μm period, demonstrating a first ever reported high sensitivity of 2.75 nm/°C. Such an LPFG may lead to high-efficiency and low-cost thermal/electrical tunable loss filters or sensors with extremely high-temperature resolution. The nonlinear thermal response of the supersensitive LPG was also reported and first explained.
Resumo:
A compact scheme for simultaneous temperature and surrounding refractive index (SRI) measurement using two long-period gratings (LPGs) of different periods inscribed side-by-side in a single piece of a double-cladding fibre is presented. One of the LPGs is sensitive to both SRI and temperature, whilst the second is sensitive to temperature only.
Resumo:
We present a compact scheme for simultaneous temperature and surrounding refractive index (SRI) measurement using two long period gratings (LPGs) of different periods inscribed side-by-side in a single piece of a double-cladding fibre. One of the LPGs is sensitive to both SRI and temperature changes whilst the second is SRI-insensitive but shows spectral shift with temperature changes. In addition, we show that a resonance peak of the SRI-insensitive LPG can be designed to appear in the EDFA wavelength region with potential use for gain flattening applications.
Resumo:
A compact scheme for simultaneous temperature and surrounding refractive index (SRI) measurement using two long-period gratings (LPGs) of different periods inscribed side-by-side in a single piece of a double-cladding fibre is presented. One of the LPGs is sensitive to both SRI and temperature, whilst the second is sensitive to temperature only.
Resumo:
We present a compact scheme for simultaneous temperature and surrounding refractive index (SRI) measurement using two long period gratings (LPGs) of different periods inscribed side-by-side in a single piece of a double-cladding fibre. One of the LPGs is sensitive to both SRI and temperature changes whilst the second is SRI-insensitive but shows spectral shift with temperature changes. In addition, we show that a resonance peak of the SRI-insensitive LPG can be designed to appear in the EDFA wavelength region with potential use for gain flattening applications.
Resumo:
We report a new concept of biochemical sensor device based on long-period grating structures UV-inscribed in D-fiber. The surrounding-medium refractive index sensitivity of the devices has been enhanced significantly by a hydrofluoric acid etching process. The devices have been used to measure the sugar concentrations showing clearly an encoding relation between the chemical concentration and the grating spectral response, demonstrating their capability for potential biochemical sensing applications.
Resumo:
Using an optical biosensor based on a dual-peak long-period fiber grating, we have demonstrated the detection of interactions between biomolecules in real time. Silanization of the grating surface was successfully realized for the covalent immobilization of probe DNA, which was subsequently hybridized with the complementary target DNA sequence. It is interesting to note that the DNA biosensor was reusable after being stripped off the hybridized target DNA from the grating surface, demonstrating a function of multiple usability.