5 resultados para carcinogen-induced urothelial bladder lesions

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of an antiserum to ultraviolet radiation (UVR)-damaged DNA is presented. A novel experimental system was employed to ascertain the limits of detection for this antiserum. Using a DNA standard containing a known amount of dimer, the limits of detection were found to be 0.9 fmol of dimer. This was compared to a limit of 20-50 fmol dimer using gas chromatography-mass spectrometry (GC-MS). Induction of thymine dimers in DNA following UVR exposure, as assessed using this antiserum in an enzyme-linked immunosorbent assay (ELISA), was compared with GC-MS measurements. The ELISA method successfully demonstrated the induction of lesions in DNA irradiated either with UVC or UVB, although despite high sensitivity, no discernible binding was seen to UVA-irradiated DNA. The antiserum was also shown to be applicable to immunocytochemistry, localising damage in the nuclei of UVR exposed keratinocytes in culture. The ability of the antiserum to detect DNA damage in skin biopsies of individuals exposed to sub-erythemal doses of UVR was also demonstrated. Moreover, the subsequent removal of this damage, as evidenced by a reduction in antiserum staining, was noted in sections of biopsies taken in the hours following irradiation. © 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exposure to the solar ultraviolet spectrum that penetrates the Earth's stratosphere (UVA and UVB) causes cellular DNA damage within skin cells. This damage is elicited directly through absorption of energy (UVB), and indirectly through intermediates such as sensitizer radicals and reactive oxygen species (UVA). DNA damage is detected as strand breaks or as base lesions, the most common lesions being 8-hydroxydeoxyguanosine (8OHdG) from UVA exposure and cyclobutane pyrimidine dimers from UVB exposure. The presence of these products in the genome may cause misreading and misreplication. Cells are protected by free radical scavengers that remove potentially mutagenic radical intermediates. In addition, the glutathione-S-transferase family can catalyze the removal of epoxides and peroxides. An extensive repair capacity exists for removing (1) strand breaks, (2) small base modifications (8OHdG), and (3) bulky lesions (cyclobutane pyrimidine dimers). UV also stimulates the cell to produce early response genes that activate a cascade of signaling molecules (e.g., protein kinases) and protective enzymes (e.g., haem oxygenase). The cell cycle is restricted via p53-dependent and -independent pathways to facilitate repair processes prior to replication and division. Failure to rescue the cell from replication block will ultimately lead to cell death, and apoptosis may be induced. The implications for UV-induced genotoxicity in disease are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pathological lesions in the form of extracellular protein deposits, intracellular inclusions and changes in cell morphology occur in the brain in the majority of neurodegenerative disorders. Studies of the presence, distribution, and molecular determinants of these lesions are often used to define individual disorders and to establish the mechanisms of lesion pathogenesis. In most disorders, however, the relationship between the appearance of a lesion and the underlying disease process is unclear. Two hypotheses are proposed which could explain this relationship: (i) lesions are the direct cause of the observed neurodegeneration ('causal' hypothesis); and (ii) lesions are a reaction to neurodegeneration ('reaction' hypothesis). These hypotheses are considered in relation to studies of the morphology and molecular determinants of lesions, the effects of gene mutations, degeneration induced by head injury, the effects of experimentally induced brain lesions, transgenic studies and the degeneration of anatomical pathways. The balance of evidence suggests that in many disorders, the appearance of the pathological lesions is a reaction to degenerative processes rather than being their cause. Such a conclusion has implications both for the classification of neurodegenerative disorders and for studies of disease pathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alzheimer’s Disease (AD) is the most common form of dementia currently affecting more than 35 million people worldwide. Hypometabolism is a major feature of AD and appears decades before cognitive decline and pathological lesions. This has a detrimental impact on the brain which has a high energy demand. Current models of AD fail to mimic all the features of the disease, which has an impact on the development of new therapies. Human stem cell derived models of the brain have attracted a lot of attention in recent years as a tool to study neurodegenerative diseases. In this thesis, neurons and astrocytes derived from the human embryonal carcinoma cell line (NT2/D1) were utilised to determine the metabolic coupling between neurons and astrocytes with regards to responses to hypoglycaemia, neuromodulators and increase in neuronal activity. This model was then used to investigate the effects of Aß(1-42) on the metabolism of these NT2-derived co-cultures as well as pure astrocytes. Additionally primary cortical mixed neuronal and glial cultures were utilised to compare this model to a widely accepted in vitro model used in Alzheimer’s disease research. Co-cultures were found to respond to Aß(1-42) in similar way to human and in vivo models. Hypometabolism was characterised by changes in glucose metabolism, as well as lactate, pyruvate and glycogen. This led to a significant decrease in ATP and the ratio of NAD+/NADH. These results together with an increase in calcium oscillations and a decrease in GSH/GSSG ratio, suggests Aß-induces metabolic and oxidative stress. This situation could have detrimental effects in the brain which has a high energy demand, especially in terms of memory formation and antioxidant capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical redox ratio as a measure of cellular metabolism is determined by an altered ratio between endogenous fluorophores NADH and flavin adenine dinucleotide (FAD). Although reported for other cancer sites, differences in optical redox ratio between cancerous and normal urothelial cells have not previously been reported. Here, we report a method for the detection of cellular metabolic states using flow cytometry based on autofluorescence, and a statistically significant increase in the redox ratio of bladder cancer cells compared to healthy controls. Urinary bladder cancer and normal healthy urothelial cell lines were cultured and redox overview was assessed using flow cytometry. Further localisation of fluorescence in the same cells was carried out using confocal microscopy. Multiple experiments show correlation between cell type and redox ratio, clearly differentiating between healthy cells and cancer cells. Based on our preliminary results, therefore, we believe that this data contributes to current understanding of bladder tissue fluorescence and can inform the design of endoscopic probes. This approach also has significant potential as a diagnostic tool for discrimination of cancer cells among shed urothelial cells in voided urine, and could lay the groundwork for an automated system for population screening for bladder cancer.