6 resultados para carbonyl group
em Aston University Research Archive
Resumo:
The reactions of directly related tellurium and selenium heterocyclic compounds with triiron dodecacarbonyl are described. The reaction of 2-telluraphthalide, C8H8OTe with [Fe3(CO)12 gave [Fe{C6H4(CH2)Te}(CO)3]2, (1). An iron atom has inserted into the telluracyclic ring, and it is probable that one co-ordinated CO ligand arises from the initially organic carbonyl group. X-ray analysis of compound (1) showed that the compound has a Fe2Te2 core, which is achieved by dimerisation. The reaction of telluraphthalic anhydride, C8H402Te with [Fe3(CO)12] gave a known, but unexpected, organic phthalide product, C8H602, which was confirmed by X-ray crystallography. Selenaphthalic anhydride, C8H4O2Se gave intractable products on reaction with [Fe3(CO)12], 2-selenaphthalide, C8H6OSe, on reaction with [Fe3(CO)12] gave a major product [Fe2{C6H4(CH2)Se}(CO)6], (2) and a minor product [Fe3{C6H4(CH2)Se}(CO)8], (3) which is an intermediate in the formation of (2). X-ray analysis of (2) shows that compound (2) is very similar to (1) except that the 18 electron rule is satisfied by co-ordination of a Fe(CO)3 moiety, rather than dimerisation. Compound (3), also studied by X-ray crystallography, differs from (2) mainly in the addition of an Fe(CO)2 moiety. Telluraphtbalic anhydride, C8H402Te, and selenaphthalic anhydride, C8H402Se, are both monoclinic and crystallise in space group P21/n. 2-Selenaphthalide, C8H402Se, is also monoclinic, space group P21/C. The reactions of the following compounds (l,3-dihydrobenzo[c]selenophene, 1,3,7,9-tetrahydrobenzo[1,2c; 4,5c'] ditellurophene, dibenzoselenophene, phenoxselenine, 3, 5-naphtho-1-telluracyclohexane and 3,5-naphtho-1-selenacyclohexane) with [Fe3lCO)12] are reported. It is unfortunate that the above compounds do not react under the conditions employed; this may be due to differing degrees of ring strain. 1,8-bis(bromomethyl)naphthalene, C12H10Br2 is monoclinic and crystallises in space group C2/c. 1,1-diiodo-3,5-naphthotelluracyclohexane, C12H10TeI2 and 3,5-naphtho-l-telluracyclohexane, C12H10Te are monoclinic and crystallise in space group P21/c. 3,5-naphtho-l-selenacyclohexane, C12H10Se and 2,2,8,8-tetraiodo-1,3,7,9-tetrahydrobenzo[1,2c;4,5c']ditellurophene are also monoclinic, space group P21/a. The syntheses of intramolecular stabilised organo-tellurium and selenium compounds are reported, having a general formula of REX (where R = phenylazophenyl; E = Se, Te; X = electronegative group, for example C1, Br or I). The crystal structures of R'TeBr, RTeI, RSeCI, RSeCI/I and RSeI (where R = phenylazophenyl) are reported. The tellurium containing X-ray structures are triclinic and have a space group P-1. The selenium containing X-ray structures are monoclinic with space group P21/n. The inclusion of nitrogen in selenium heterocycles provides access to an entirely new area of organometallic chemistry. The reaction of 2-methylbenzoselenazole with [Fe3(CO)12] gave [Fe2{C6H4(NCH2CH3)Se}(CO)6]. The reactions of 2-(methyltelluro)benzanilide or 2-(methylseleno)benzanilide with [Fe3(CO)12] gave reaction products [Fe2(μTeMe)2(CO)6] and [Fe2 (μ-SeMe)2(CO)6] respectively, which were confmned by X-ray crystallography. The use of Mossbauer spectroscopy on the products obtained from the reactions of heterocyclic compounds with [Fe3(CO)12] can give useful information, for example the number of iron sites and the environments of these iron sites within the products.
Resumo:
Phosphonoformate and phosphonoacetate are effective antiviral agents, however they are charged at physiological pH and as such penetration into cells and diffusion across the blood-brain bamer is limited. In an attempt to increase the lipophilicity and improve the transport properties of these molecules, prodrugs were synthesised and their stabilities and reconversion to the parent compound subsequently investigated by the techniques of 31P nuclear magnetic resonance spectroscopy and high performance liquid Chromatography. A series of 4-substituted dibenzyl (methoxycarbonyl)phosphonates were prepared and found to be hydrolytically unstable giving predominantly the diesters, benzyl (methoxycarbonyl)phosphonates. This instability arose from the electron-withdrawing effect of the carbonyl group promoting nucleophilic attack at phosphorus. It was possible to influence the mechanism and, to some extent, the rate of hydrolysis of the phosphonoformate triesters to the diesters by varying the electronic nature of the substituent in the 4-position of the aromatic ring. Strongly electron-withdrawing groups increased the sensitivity of phosphorus to nucleophilic attack, thus promoting P-O .bond cleavage and rapid hydrolysis. Conversely, weakly electron-withdrawing substituents encouraged C-O bond fission, presumably through resonance stabilisation of the benzyl carbonium ion. The loss of the protecting group on phosphorus was in competition with nucleophilic attack at the carbonyl group, resulting in P-C bond cleavage with dibenzyl phosphite formation. The high instability and P-C bond fission make triesters unsuitable prodrug forms of phosphonoformate. A range of chemically stable triesters of phosphonoacetate were synthesised and their bioactivation investigated. Di(benzoyloxymethyl) (methoxycarbonylmethyl)phosphonates degraded to the relevant benzoyloxymethyl (methoxycarbonylmethyl)phosphonate in the presence of esterase. The enzymatic activation was restricted to the removal of only one protecting group from phosphorus, most likely due to the close proximity of the benzoyloxy ester function to the anionic charge on the diester. However, in similar systems di(4-alkanoyloxybenzyl) (methoxycarbonylmethyl)phosphonates degraded in the presence of esterase with the loss of both protecting groups on phosphorus to give the monoester, (methoxycarbonylmethyl)phosphonate, via the intermediary of the unstable 4-hydroxy benzyl esters. The methoxycarbonyl function remained intact. The rate of enzymatic hydrolysis and subsequent removal of the protecting groups on phosphorus was dependent on the nature of the alkanoyl group and was most rapid for the 4-nbutanoyloxybenzyl and 4-iso-butanoyloxybenzyl esters of phosphonoacetate. This provides a strategy for the design of a prodrug with sufficient stability in plasma to reach the central nervous system in high concentration, wherein rapid metabolism to the active drug by brain-associated enzymes occurs.
Resumo:
Previous research has shown that the naturally occurring reactive electrophilic species (RES), 12-oxophytodienoic acid (OPDA), not only serves as a precursor for jasmonic acid but is also a potent antifungal compound. However, both the low amount present in plants and the multistep synthesis required to produce this compound on a scale viable for agrochemical use currently limits its practical value. The aim of this research was to generate a range of molecular mimics of OPDA with a minimum number of synthetic steps and screen for antifungal activity. Synthetic 4-octyl-cyclopentenone containing the cyclopentenone ring and an eight carbon alkyl chain was found to show the highest in vitro antifungal activity against C. herbarum and B. cinerea with minimum inhibition concentration (MIC) of 100-200µM. This indicates that structurally simplified 4-octyl-cyclopentenone can be successfully synthesised to mimic the antifungal activity of OPDA against specific fungal strains. Application of 4-octyl-cyclopentenone could act as surfactant by disrupting and disorganising the lipid membrane non-specifically, resulting in the leakage of potassium ions, which was the proposed mode of action of this compound. However, the sensitivity of fungi to this compound is not correlated to the lipid composition of fungal spores. (E)-2-alkenals were also studied for their antimicrobial activity and (E)-2-undecenal was found to have the highest antimicrobial activity against a range of pathogens. The hydrophilic moiety (the a,ß-unsaturated carbonyl group), common to both (E)-2-undecenal and 4-octyl-cyclentenone is essential to their bioactivity, and the hydrophobic moiety plays an important role in their antimicrobial activities. 4-Octyl-cyclopentenone showed no visible toxicity to the test plant, Arabidopsis thaliana, suggesting that its high antifungal activity against Botrytis and Cladosporium could be exploited for commercialisation as a new generation of agrochemical.
Resumo:
Restricted rotation in indol-3-yl-N-alkyl- and indol-3-yl-N,N-dialkyl-glyoxalylamides can in principle give the syn-periplanar and anti-periplanar rotamers. In asymmetrically disubstituted glyoxalylamides, steric effects lead to the occurrence of both rotamers, as observed by NMR spectroscopy. The predominant peak corresponds with the anti rotamer, in which the bulkier alkyl group is orientated trans to the amide carbonyl group. In monoalkylated glyoxalylamides, only one set of peaks is observed, consistent with the presence of only one rotamer. Crystal structures of 5-methoxyindole-3-yl-N-tert-butylglyoxalylamide, indole-3-yl-N-tert-butylglyoxalylamide, and indole-3-yl-N-isopropylglyoxalylamide reported here reveal a syn conformation held by an intramolecular N-HO hydrogen bond.
Resumo:
We report on a novel experimental study of a pH-responsive polyelectrolyte brush at the silicon/D2O interface. A poly[2-(diethylamino)ethyl methacrylate] brush was grown on a large silicon crystal which acted as both a substrate for a neutron reflectivity solid/liquid experiment but also as an FTIR-ATR spectroscopy crystal. This arrangement has allowed for both neutron reflectivities and FTIR spectroscopic information to be measured in parallel. The chosen polybase brush shows strong IR bands which can be assigned to the N-D+ stretch, D2O, and a carbonyl group. From such FTIR data, we are able to closely monitor the degree of protonation along the polymer chain as well as revealing information concerning the D2O concentration at the interface. The neutron reflectivity data allows us to determine the physical brush profile normal to the solid/liquid interface along with the corresponding degree of hydration. This combined approach makes it possible to quantify the charge on a polymer brush alongside the morphology adopted by the polymer chains. © 2013 American Chemical Society.
Resumo:
Ageing is a natural phenomenon of the human lifecycle, yet it is still not understood what causes the deterioration of the human body near the end of the lifespan. One popular theory is the Free Radical Theory of Ageing, which proposes that oxidative damage to biomolecules causes ageing of tissues. The ageing population is affected by many chronic diseases. This study focused on sarcopenia (muscle loss in ageing) and obesity as two models for comparison of oxidative damage in muscle proteins in mice. The aim of the study was to develop advanced mass spectrometry methods to detect specific oxidative modifications to mouse muscle proteins, including oxidation, nitration, chlorination, and carbonyl group formation, but western blotting was also used to provide complementary information on the oxidative state of proteins from aged and obese muscle. Mass spectrometry proved to be a powerful tool, enabling identification of the types of modifications present, the sites at which they were present and percentage of the peptide populations that were modified. Targeted and semi-targeted mass spectrometry methods were optimised for the identification and quantitation of the oxidised residues in muscle proteins. The development of the quantitative methods enabled comparisons of mass spectrometry instruments. Both the Time of Flight and QTRAP systems showed advantages of using the different mass analysers to quantify oxidative modifications. Several oxidised residues were characterised and quantified in both the obese and sarcopenic models, and higher levels of oxidation were found compared to their control counterparts. Residues found to be oxidised were oxidation of proline, tyrosine and tryptophan, dioxidation of methionine, allysine and nitration of tyrosine. However quantification was performed on methionine dioxidation and cysteine trioxidation containing residues in SERCA. The combination of measuring residue susceptibility and functional studies could contribute to understanding the overall role of oxidation in ageing and obesity.