11 resultados para capillary isoelectric focusing
em Aston University Research Archive
Resumo:
Four novel oxapenem compounds were evaluated for their ß-lactamase inhibitory and antibacterial properties. Two (AM-112 and AM-113) displayed intrinsic antibacterial activity with MICs of between 2 to 16µg/ml and 0.5-2µg/ml against Escherichia coli and methicillin-sensitive and -resistant Staphylococcus aureus, respectively. The isomers of these compounds, AM-115 and AM-114 did not display significant antibacterial activity. Combination of the oxapenems with ceftazidime afforded protection against ß-lactamase-producing strains, including hyperproducers of class C enzymes and extended-spectrum ß-lactamase enzymes. A fixed 4µg/ml concentration of AM-112 protected a panel of eight cephalosporins against hydrolysis by class A and class C ß-lactamase producers. In vivo studies confirmed the protective effect of AM-112 for ceftazidime against ß-lactamase producing S. aureus, Enterobacter cloacae and E. coli strains in a murine intraperitoneal infection model. Each of the oxapenems inhibited class A, class C and class D ß-lactamases isolated from whole cells and purified by isoelectric focusing. AM-114 and AM-115 were as effective as clavulanic acid against class A enzymes. AM-112 and AM-113 were less potent against these enzymes. Class C and class D enzymes proved very susceptible to inhibition by the oxapenems. Molecular modelling of the oxapenems in the active site of the class A. TEM-1 and class C P99 enzymes identified a number of potential sites of interaction. The modelling suggested that Ser-130 in TEM-1 and Tyr-150 in P99 were likely candidates for cross-linking of the inhibitor, leading to inhibition of the enzyme. Morphology studies indicated that sub-inhibitory concentrations of the oxapenems caused the formation of round-shaped cells in E. coli DC0, indicating inhibition of penicillin-binding protein 2 (PBP2). The PBP affinity profile of AM-112 was examined in isolated cell membranes of E. coli DC0, S. aureus NCTC 6571, Enterococcus faecalis SFZ and E. faecalis ATCC 29213, in competition with a radiolabelled penicillin. PBP2 was identified as the primary target for AM-112 in E. coli DC0. Studies on S. aureus NCTC 6571 failed to identify a binding target. AM-112 bound to all the PBPs of both E. faecalis strains, and a concentration of 10µg/ml inhibited all the PBPs except PBP3.
Resumo:
Burkholderia cepacia is an opportunistic pathogen that colonises of the lungs of cystic fibrosis (CF) patients, with a frequently fatal outcome. Antibiotic resistance is common and highly transmissible epidemic strains have been described in the UK. 37 B. cepacia isolates from clinical and botanical sources were characterised via metabolic capabilities, antibiotic sensitivity, fatty acid methyl ester (FAME) profiles restriction digest analysis of chromosomal DNA by pulsed-gel electrophoresis (PFGE) (with the use of two separate restriction enzymes) and outer membrane protein (OMP) profiles. This revealed isolates of the UK CF epidemic strain to form a distinct group with a specific OMP profile. Cluster analysis of PFGE and FAME profiles revealed the species Burkholderia gladioli and Burkholderia vietnamiensis to be more closely related to each other and to laboratory strains of B. cepacia than to the CF epidemic strain considered a member of the latter species. The epidemic strain of B. cepacia may therefore be worthy of species definition in its own right. All the strains studied showed a high level of resistance to antibiotics, including the carbapenems. Considering this, carbapenemase production by isolates of B. cepacia was investigated. A metallo-β-lactamase from a clinical strain of B. cepacia was isolated and partially purified of using Cibacron blue F3GA-coupled agarose. The resulting preparation showed a single band of β-lactamase activity (pI 8.45) after analytical isoelectric focusing. The enzyme was particularly effective in the hydrolysis of imipenem. Meropenem, biapenem, cephaloridine, ceftazidime, benzylpenicillin, ampicillin and carbenicillin were hydrolysed at a lower rate. An unusual inhibition profile was noted. Inhibition by the metal ion chelators ethylene diamine tetra acetic acid and o-phenanthroline was reversed by addition of zinc, indicating a metallo-enzyme, whilst >90% inhibition was attainable with 0.1mM concentrations of tazobactam and clavulanic acid. A study of 8 other clinical isolates showed an enzyme of pI 8.45 to be present and inducible by imipenem in each case. This enzyme was assigned PCM-I (Pseudomonas cepacia metalloenzyme I).
Resumo:
We propose to exploit a self-focusing effect in the atmosphere to assist delivering powerful laser beams from orbit to the ground. We demonstrate through numerical modeling that when the self-focusing length is comparable with the atmosphere height the spot size on the ground can be reduced well below the diffraction limits without beam quality degradation. The density variation suppresses beam filamentation and provides the self-focusing of the beam as a whole. The use of light self-focusing in the atmosphere can greatly relax the requirements for the orbital optics and ground receivers.
Resumo:
Recently, we demonstrated the possibility to extend the range of capillary electrophoresis (CE) applications to the separation of non-water-soluble synthetic polymers. This work focuses on the control of the electro-osmotic flow (EOF) and on the limitation of the solute adsorption in nonaqueous electrolytes. For these purposes, different strategies were investigated. For the initial, a viscous additive (ethylene glycol or glycerol) was used in the electrolyte in order to decrease the EOF magnitude and, possibly, to compete with solute adsorption. A second strategy was to modify, before separation, the fused-silica capillary wall by the adsorption of poly(ethylene oxide) (PEO) via hydrogen bonding. The influence of the molecular mass of the adsorbed PEO on the EOF magnitude and direction was studied in electrolytes based on methanol/acetonitrile mixtures containing ammonium ions. For PEO molecular masses above 1000 g/mol, reversed (anodic) EOF were reported in accordance with previous results obtained with PEO covalently bonded capillaries. The influence of the nature and the concentration of the background electrolyte cation on the EOF magnitude and direction were also investigated. A third strategy consisted in modifying the capillary wall by the adsorption of a cationic polyelectrolyte layer. Advantageously, this polyelectrolyte layer suppressed the adsorption of the polymer solutes onto the capillary wall. The results obtained in this work confirm the high potential and the versatility of CE for the characterization of ionizable organic polymers in nonaqueous media.
Resumo:
A protein's isoelectric point or pI corresponds to the solution pH at which its net surface charge is zero. Since the early days of solution biochemistry, the pI has been recorded and reported, and thus literature reports of pI abound. The Protein Isoelectric Point database (PIP-DB) has collected and collated these data to provide an increasingly comprehensive database for comparison and benchmarking purposes. A web application has been developed to warehouse this database and provide public access to this unique resource. PIP-DB is a web-enabled SQL database with an HTML GUI front-end. PIP-DB is fully searchable across a range of properties.
Resumo:
Poly(Nε-trifluoroacetyl-l-lysine) was used as a model solute to investigate the potential of nonaqueous capillary electrophoresis (NACE) for the characterization of synthetic organic polymers. The information obtained by NACE was compared to that derived from size exclusion chromatography (SEC) experiments, and the two techniques were found to be complimentary for polymer characterization. On one hand, NACE permitted (i) the separation of oligomers according to their molar mass and (ii) the separation of the polymers according to the nature of the end groups. On the other hand, SEC experiments were used for the characterization of the molar mass distribution for higher molar masses. Due to the tendency of the solutes (polypeptides) to adsorb onto the fused-silica capillary wall, careful attention was paid to the rinsing procedure of the capillary between runs in order to keep the capillary surface clean. For that purpose, the use of electrophoretic desorption under denaturating conditions was very effective. Optimization of the separation was performed by studying (i) the influence of the proportion of methanol in a methanol/acetonitrile mixture and (ii) the influence of acetic acid concentration in the background electrolyte. Highly resolved separation of the oligomers (up to a degree of polymerization n of ∼50) was obtained by adding trifluoroacetic acid to the electrolyte. Important information concerning the polymer conformations could be obtained from the mobility data. Two different plots relating the effective mobility data to the degree of polymerization were proposed for monitoring the changes in polymer conformations as a function of the number of monomers.
Resumo:
A ground-based laser system for space-debris cleaning will use powerful laser pulses that can self-focus while propagating through the atmosphere. We demonstrate that for the relevant laser parameters, this self-focusing can noticeably decrease the laser intensity on the target. We show that the detrimental effect can be, to a great extent, compensated for by applying the optimal initial beam defocusing. The effect of laser elevation on the system performance is discussed.
Resumo:
Motivation: In any macromolecular polyprotic system - for example protein, DNA or RNA - the isoelectric point - commonly referred to as the pI - can be defined as the point of singularity in a titration curve, corresponding to the solution pH value at which the net overall surface charge - and thus the electrophoretic mobility - of the ampholyte sums to zero. Different modern analytical biochemistry and proteomics methods depend on the isoelectric point as a principal feature for protein and peptide characterization. Protein separation by isoelectric point is a critical part of 2-D gel electrophoresis, a key precursor of proteomics, where discrete spots can be digested in-gel, and proteins subsequently identified by analytical mass spectrometry. Peptide fractionation according to their pI is also widely used in current proteomics sample preparation procedures previous to the LC-MS/MS analysis. Therefore accurate theoretical prediction of pI would expedite such analysis. While such pI calculation is widely used, it remains largely untested, motivating our efforts to benchmark pI prediction methods. Results: Using data from the database PIP-DB and one publically available dataset as our reference gold standard, we have undertaken the benchmarking of pI calculation methods. We find that methods vary in their accuracy and are highly sensitive to the choice of basis set. The machine-learning algorithms, especially the SVM-based algorithm, showed a superior performance when studying peptide mixtures. In general, learning-based pI prediction methods (such as Cofactor, SVM and Branca) require a large training dataset and their resulting performance will strongly depend of the quality of that data. In contrast with Iterative methods, machine-learning algorithms have the advantage of being able to add new features to improve the accuracy of prediction. Contact: yperez@ebi.ac.uk Availability and Implementation: The software and data are freely available at https://github.com/ypriverol/pIR. Supplementary information: Supplementary data are available at Bioinformatics online.
Resumo:
MCM-41's limited hydrothermal stability has been often related to the hydrolysis of Si-O-Si bonds due to the low degree of condensation, its thin walls or a combination of them. In this work, evidence for an additional factor is provided; a physical effect that occurs during the drying of the hydrothermally treated calcined material due to the intense capillary stress exerted in water. Depending on both physical (i.e. mechanical) and chemical (i.e. hydrolysis) resistances, the structure undergoes differently. Three MCM-41 samples with different degree of condensation were investigated. The most remarkable results are found with un-aged TEOS based material, which gets fully disordered and shrunk for all applied hydrothermal temperatures in water. Comparison between water and a low-surface-tension-solvent drying revealed that capillarity is responsible for the loss of ordering (and shrinkage) at moderate hydrothermal temperatures. The material's structure is hexagonal and shrinkage-free under the low-surface-tension-solvent route. At a high hydrothermal temperature, hydrolysis is extensive and responsible for the loss of ordering. The other remarkable finding regards the aged MCM-41 mesostructure that maintains the hexagonal features at all applied temperatures in water, and it is more stable against capillarity at high temperature. The Na-metasilicate based material is mechanically very stable and gets disordered at high temperature due to hydrolysis.
Resumo:
Ultra-high power (exceeding the self-focusing threshold by more than three orders of magnitude) light beams from ground-based laser systems may find applications in space-debris cleaning. The propagation of such powerful laser beams through the atmosphere reveals many novel interesting features compared to traditional light self-focusing. It is demonstrated here that for the relevant laser parameters, when the thickness of the atmosphere is much shorter than the focusing length (that is, of the orbit scale), the beam transit through the atmosphere in lowest order produces phase distortion only. This means that by using adaptive optics it may be possible to eliminate the impact of self-focusing in the atmosphere on the laser beam. The area of applicability of the proposed "thin window" model is broader than the specific physical problem considered here. For instance, it might find applications in femtosecond laser material processing.