7 resultados para cancer initiation

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Previous studies suggest that the activation (autophosphorylation) of dsRNA-dependent protein kinase (PKR) can stimulate protein degradation, and depress protein synthesis in skeletal muscle through phosphorylation of the translation initiation factor 2 (eIF2) on the alpha-subunit. To understand whether these mediators are important in muscle wasting in cancer patients, levels of the phospho forms of PKR and eIF2alpha have been determined in rectus abdominus muscle of weight losing patients with oesophago-gastric cancer, in comparison with healthy controls. Levels of both phospho PKR and phospho eIF2alpha were significantly enhanced in muscle of cancer patients with weight loss irrespective of the amount and there was a linear relationship between phosphorylation of PKR and phosphorylation of eIF2alpha (correlation coefficient 0.76, P=0.005). This suggests that phosphorylation of PKR led to phosphorylation of eIF2alpha. Myosin levels decreased as the weight loss increased, and there was a linear relationship between myosin expression and the extent of phosphorylation of eIF2alpha (correlation coefficient 0.77, P=0.004). These results suggest that phosphorylation of PKR may be an important initiator of muscle wasting in cancer patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Up to 50% of cancer patients suffer from a progressive atrophy of adipose tissue and skeletal muscle, called cachexia, resulting in weight loss, a reduced quality of life, and a shortened survival time. Anorexia often accompanies cachexia, but appears not to be responsible for the tissue loss, particularly lean body mass. An increased resting energy expenditure is seen, possibly arising from an increased thermogenesis in skeletal muscle due to an increased expression of uncoupling protein, and increased operation of the Cori cycle. Loss of adipose tissue is due to an increased lipolysis by tumor or host products. Loss of skeletal muscle in cachexia results from a depression in protein synthesis combined with an increase in protein degradation. The increase in protein degradation may include both increased activity of the ubiquitin-proteasome pathway and lysosomes. The decrease in protein synthesis is due to a reduced level of the initiation factor 4F, decreased elongation, and decreased binding of methionyl-tRNA to the 40S ribosomal subunit through increased phosphorylation of eIF2 on the a-subunit by activation of the dsRNA-dependent protein kinase, which also increases expression of the ubiquitin-proteasome pathway through activation of NF?B. Tumor factors such as proteolysis-inducing factor and host factors such as tumor necrosis factor-a, angiotensin II, and glucocorticoids can all induce muscle atrophy. Knowledge of the mechanisms of tissue destruction in cachexia should improve methods of treatment. Copyright © 2009 the American Physiological Society

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To determine the effectiveness of the polyanionic, metal binding agent D-myo-inositol-1,2,6-triphosphate (alpha trinositol, AT), and its hexanoyl ester (HAT), in tissue wasting in cancer cachexia. METHODS: The anti-cachexic effect was evaluated in the MAC16 tumour model. RESULTS: Both AT and HAT attenuated the loss of body weight through an increase in the nonfat carcass mass due to an increase in protein synthesis and a decrease in protein degradation in skeletal muscle. The decrease in protein degradation was associated with a decrease in activity of the ubiquitin-proteasome proteolytic pathway and caspase-3 and -8. Protein synthesis was increased due to attenuation of the elevated autophosphorylation of double-stranded RNA-dependent protein kinase, and of eukaryotic initiation factor 2alpha together with hyperphosphorylation of eIF4E-binding protein 1 and decreased phosphorylation of eukaryotic elongation factor 2. In vitro, AT completely attenuated the protein degradation in murine myotubes induced by both proteolysis-inducing factor and angiotensin II. CONCLUSION: These results show that AT is a novel therapeutic agent with the potential to alleviate muscle wasting in cancer patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cachexia inducing tumours are known to produce a glycoprotein called proteolysis inducing factor (PIF), which induces skeletal muscle atrophy via increased protein degradation and decreased protein synthesis. The objective of this study was to investigate the signalling pathway by which PIF reduces protein synthesis in skeletal muscle and to determine the link, if any, to the ability to induce protein degradation. In murine myotubes PIF induced an increase in expression of the active form of the dsNRA dependent protein kinase (PKR), as well as the phosphorylated form of the translation initiator elF2a, possibly through the release of calcium, at the same concentration as that inhibiting protein synthesis. Inhibition of PKR reversed the inhibition of protein synthesis by PIF and also the induction of protein degradation through the ubiquitin-proteasome pathway by a reduction in the nuclear migration of NK-?B. The expression of phosphorylated forms of PKR and elF2a was also increased in the muscle of cancer patients experiencing weight loss, and in gastrocnemius muscle of mice bearing the cachexia inducing MAC16 tumour, as well as in the tumour itself. Treatment of mice bearing the MAC16 tumour with a PKR inhibitor attenuated muscle atrophy and inhibited tumour growth, through the inactivation of PKR and the consequent reduction of nuclear accumulation of NF-?B. A decreased translational efficiency of the elF-4F complex of initiation factors through dephosphorylation of 4E-BP1 and an increase eEF2 phosphorylation was seen in response to PIF in vitro. The same pattern of events also occurred in gastrocnemius muscle of mice bearing the MAC16 tumour demonstrating weight loss, where a depression of mTOR and p70S6K activation was also observed as weight loss increased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, the BCAAs (branched-chain amino acids) leucine and valine caused a significant suppression in the loss of body weight in mice bearing a cachexia-inducing tumour (MAC16), producing a significant increase in skeletal muscle wet weight, through an increase in protein synthesis and a decrease in degradation. Leucine attenuated the increased phosphorylation of PKR (double-stranded-RNA-dependent protein kinase) and eIF2α (eukaryotic initiation factor 2α) in skeletal muscle of mice bearing the MAC16 tumour, due to an increased expression of PP1 (protein phosphatase 1). Weight loss in mice bearing the MAC16 tumour was associated with an increased amount of eIF4E bound to its binding protein 4E-BP1 (eIF4E-binding protein 1), and a progressive decrease in the active eIF4G-eIF4E complex due to hypophosphorylation of 4E-BP1. This may be due to a reduction in the phosphorylation of mTOR (mammalian target of rapamycin), which may also be responsible for the decreased phosphorylation of p70S6k (70 kDa ribosomal S6 kinase). There was also a 5-fold increase in the phosphorylation of eEF2 (eukaryotic elongation factor 2), which would also decrease protein synthesis through a decrease in translation elongation. Treatment with leucine increased phosphorylation of mTOR and p70S6k, caused hyperphosphorylation of 4E-BP1, reduced the amount of 4E-BP1 associated with eIF4E and caused an increase in the eIF4G-eIF4E complex, together with a reduction in phosphorylation of eEF2. These changes would be expected to increase protein synthesis, whereas a reduction in the activation of PKR would be expected to attenuate the increased protein degradation. © The Authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose of review: Although cachexia has a major effect on both the morbidity and mortality of cancer patients, information on the mechanisms responsible for this condition is limited. This review summarizes recent data in this area. Recent findings: Cachexia is defined as loss of muscle, with or without fat, frequently associated with anorexia, inflammation and insulin resistance. Loss of adipose mass is due to an increased lipolysis through an increased expression of hormone-sensitive lipase. Adipose tissue does not contribute to the inflammatory response. There is an increased phosphorylation of both protein kinase R (PKR) and eukaryotic initiation factor 2 on the α-subunit in skeletal muscle of cachectic cancer patients, which would lead to muscle atrophy through a depression in protein synthesis and an increase in degradation. Mice lacking the ubiquitin ligase MuRF1 are less susceptible to muscle wasting under amino acid deprivation. Expression of MuRF1 and atrogin-1 is increased by oxidative stress, whereas nitric oxide may protect against muscle atrophy. Levels of interleukin (IL)-6 correlate with cachexia and death due to an increase in tumour burden. Ghrelin analogues and melanocortin receptor antagonists increase food intake and may have a role in the treatment of cachexia. Summary: These findings provide impetus for the development of new therapeutic agents. © 2010 Wolters Kluwer Health

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both cytokines and tumor factors have been implicated in tissue loss in cancercachexia. Loss of adipose tissue is most likely due to the tumor (and host) factorzinc-α2-glycoprotein because of its direct lipolytic effect, ability to sensitizeadipocytes to lipolytic stimuli and increased expression in cachexia. TNF-α andthe tumor factor proteolysis-inducing factor are the major contenders for skeletalmuscle at rophy; both increase protein degradat ion through theubiquitin-proteasome pathway and depres s protein synthesis throughphosphorylation of eukaryotic initiation factor 2α. However, while most studiesreport proteolysis-inducing factor levels to correlate with the appearance ofcachexia, there is some disagreement regarding a correlation between serumlevels of TNF-α and weight loss. Furthermore, only antagonists to proteolysisinducingfactor prevent muscle loss in cancer patients, suggesting that tumorfactors are the most important. © 2010 Future Medicine Ltd.