30 resultados para cancer growth factor

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several studies show that membrane transport mechanisms are regulated by signalling molecules. Recently, genome-wide screen analyses in C.elegans have enabled scientists to identify novel regulators in membrane trafficking and also signalling molecules which are found to couple with this machinery. Fibroblast growth factor (FGF) via binding to fibroblast growth factor receptor (FGFR) mediate signals which are essential in the development of an organism, patterning, cell migration and tissue homeostasis. Impaired FGFR-mediated signalling has been associated with various developmental, neoplastic, metabolic and neurological diseases and cancer. In this study, the potential role of FGFR-mediated signalling pathway as a regulator of membrane trafficking was investigated. The GFP-tagged yolk protein YP170-GFP trafficking was analysed in worms where 1) FGFR signalling cascade components were depleted by RNAi and 2) in mutant animals. From these results, it was found that the disruption of the genes egl-15 (FGFR), egl-17(FGF), let-756(FGF), sem-5, let-60, lin-45, mek-2, mpk-1 and plc-3 lead to abnormal localization of YP170-GFP, suggesting that signalling downstream of FGFR via activation of MAPK and PLC-γ pathway is regulating membrane transport. The route of trafficking was further investigated, to pinpoint which membrane step is regulated by worm FGFR, by analysing a number of GFP-tagged intracellular membrane markers in the intestine of Wild Type (WT) and FGFR mutant worms. FGFR mutant worms showed a significant difference in the localisation of several endosomal membrane markers, suggesting its regulatory role in early and recycling steps of endocytosis. Finally, the trafficking of transferrin in a mammalian NIH/3T3 cell line was investigated to identify the conservation of these membrane trafficking regulatory mechanisms between organisms. Results showed no significant changes in transferrin trafficking upon FGFR stimulation or inhibition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Approach and Results - Using in vitro and in vivo assays, we here demonstrate that the interaction between PMCA4 and calcineurin in VEGF-stimulated endothelial cells leads to downregulation of the calcineurin/NFAT pathway and to a significant reduction in the subsequent expression of the NFAT-dependent, VEGF-activated, proangiogenic genes RCAN1.4 and Cox-2. PMCA4-dependent inhibition of calcineurin signaling translates into a reduction in endothelial cell motility and blood vessel formation that ultimately impairs in vivo angiogenesis by VEGF. Objective - Vascular endothelial growth factor (VEGF) has been identified as a crucial regulator of physiological and pathological angiogenesis. Among the intracellular signaling pathways triggered by VEGF, activation of the calcineurin/ nuclear factor of activated T cells (NFAT) signaling axis has emerged as a critical mediator of angiogenic processes. We and others previously reported a novel role for the plasma membrane calcium ATPase (PMCA) as an endogenous inhibitor of the calcineurin/NFAT pathway, via interaction with calcineurin, in cardiomyocytes and breast cancer cells. However, the functional significance of the PMCA/calcineurin interaction in endothelial pathophysiology has not been addressed thus far. Conclusions - Given the importance of the calcineurin/NFAT pathway in the regulation of pathological angiogenesis, targeted modulation of PMCA4 functionality might open novel therapeutic avenues to promote or attenuate new vessel formation in diseases that occur with angiogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overexpression of epidermal growth factor receptor (EGFr) has been implicated as a causative factor and a poor prognostic marker in a number of carcinomas. Therefore, strategies that down-regulate EGFr expression may be therapeutically useful. We designed antisense ODNs complementary to the initiation codon region of the EGFr mRNA and evaluated their efficacy in several tumor-derived cells, including the A431 cell line that express amplified levels of EGFr. A 15-mer phosphorothioate (PS) antisense ODN (erbB1AS15) induced a concentration-dependent reduction in proliferation that was accompanied by a change in the morphology of A431 cells into more tightly clustered and discrete colonies. A 15-mer sense (PS) control oligodeoxynucleotide (ODN) and a phosphodiester (PO) version of erbB1AS15 had little or no effect on cell number of morphology, and erbB1AS15 (PS) did not induce these effects in control cell lines expressing lower levels of EGFr. The effects of erbB1AS15 (PS) on A431 cells were not mediated by a true antisense mechanism in that there was no reduction in the level of EGFr mRNA or protein over a 24-hr period, as determined by Northern and Western blotting, respectively. However, autophosphorylation of the receptor was significantly reduced by erbB1AS15 (PS) and not by control ODNs. The results of further studies suggested that this effect was mediated by a direct, dose-dependent inhibition of the EGFr tyrosine kinase enzyme and was not due to impairment of either ligand-binding or receptor dimerization. These data suggest that erbB1AS15 (PS) can inhibit proliferation and alter the morphology of A431 cells by a sequence-selective, but nonantisense mechanism affecting receptor tyrosine kinase activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activation of phosphoinositide 3-hydroxykinase (P13K) is currently believed to represent the critical regulatory event which leads to the production of a novel intracellular signal. We have examined the control of this pathway by a number of cell-surface receptors in NG115-401L-C3 neuronal cells. Insulin-like growth factor-I stimulated the accumulation of 3-phosphorylated inositol lipids in intact cells and the appearance of P13K in antiphosphotyrosine-antibody-directed immunoprecipitates prepared from lysed cells, suggesting that P13K had been activated by a mechanism involving a protein tyrosine kinase. In contrast, P13K in these cells was not regulated by a variety of G-protein-coupled receptors, nerve growth factor acting via a low affinity receptor, or receptors for transforming growth factor-beta and interleukin-1. The receptor-specificity of P13K activation in these cells places significant constraints on the possible physiological function(s) of this pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In fibrotic conditions increases in TG2 activity has been linked to an increase in the deposition of extracellular matrix proteins. Using TG2 transfected Swiss 3T3 fibroblasts expressing TG2 under the control of the tetracycline-regulated inducible promoter, we demonstrate that induction of TG2 not only stimulates an increase in collagen and fibronectin deposition but also an increase in the expression of these proteins. Increased TG2 expression in these fibroblasts led to NF-kappaB activation, resulting in the increased expression of transforming growth factor (TGF) beta(1). In addition, cells overexpressing TG2 demonstrated an increase in biologically active TGFbeta(1) in the extracellular environment. A specific site-directed inhibitor of TG abolished the NF-kappaB and TGFbeta1 activation and the subsequent elevation in the synthesis and deposition of extracellular matrix proteins, confirming that this process depends on the induction of transglutaminase activity. Treatment of TG2-induced fibroblasts with nontoxic doses of nitric oxide donor S-nitroso-N-acetylpenicillamine resulted in decreased TG2 activity and apprehension of the inactive enzyme on the cell surface. This was paralleled by a reduction in activation of NF-kappaB and TGFbeta(1) production with a subsequent decrease in collagen expression and deposition. These findings support a role for NO in the regulation of TG2 function in the extracellular environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Diabetic nephropathy is the leading cause of end-stage kidney failure worldwide. It is characterized by excessive extracellular matrix accumulation. Transforming growth factor beta 1 (TGF-ß1) is a fibrogenic cytokine playing a major role in the healing process and scarring by regulating extracellular matrix turnover, cell proliferation and epithelial mesanchymal transdifferentiation. Newly synthesized TGF-ß is released as a latent, biologically inactive complex. The cross-linking of the large latent TGF-ß to the extracellular matrix by transglutaminase 2 (TG2) is one of the key mechanisms of recruitment and activation of this cytokine. TG2 is an enzyme catalyzing an acyl transfer reaction leading to the formation of a stable e(?-glutamyl)-lysine cross-link between peptides.Methods. To investigate if changes in TG activity can modulate TGF-ß1 activation, we used the mink lung cell bioassay to assess TGF-ß activity in the streptozotocin model of diabetic nephropathy treated with TG inhibitor NTU281 and in TG2 overexpressing opossum kidney (OK) proximal tubular epithelial cells.Results. Application of the site-directed TG inhibitor NTU281 caused a 25% reduction in kidney levels of active TGF-ß1. Specific upregulation of TG2 in OK proximal tubular epithelial cells increased latent TGF-ß recruitment and activation by 20.7% and 19.7%, respectively, in co-cultures with latent TGF-ß binding protein producing fibroblasts.Conclusions. Regulation of TG2 directly influences the level of active TGF-ß1, and thus, TG inhibition may exert a renoprotective effect by targeting not only a direct extracellular matrix deposition but also TGF-ß1 activation and recruitment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased vascular permeability is an early event characteristic of tissue ischemia and angiogenesis. Although VEGF family members are potent promoters of endothelial permeability the role of placental growth factor (PlGF) is hotly debated. Here we investigated PlGF isoforms 1 and 2 and present in vitro and in vivo evidence that PlGF-1, but not PlGF-2, can inhibit VEGF-induced permeability but only during a critical window post-VEGF exposure. PlGF-1 promotes VE-cadherin expression via the trans-activating Sp1 and Sp3 interaction with the VE-cadherin promoter and subsequently stabilizes transendothelial junctions, but only after activation of endothelial cells by VEGF. PlGF-1 regulates vascular permeability associated with the rapid localization of VE-cadherin to the plasma membrane and dephosphorylation of tyrosine residues that precedes changes observed in claudin 5 tyrosine phosphorylation and membrane localization. The critical window during which PlGF-1 exerts its effect on VEGF-induced permeability highlights the importance of the translational significance of this work in that PLGF-1 likely serves as an endogenous anti-permeability factor whose effectiveness is limited to a precise time point following vascular injury. Clinical approaches that would pattern nature's approach would thus limit treatments to precise intervals following injury and bring attention to use of agents only during therapeutic windows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteolysis-inducing factor (PIF), a tumour-produced cachectic factor, induced a dose-dependent decrease in protein synthesis in murine myotubes, together with an increase in phosphorylation of eucaryotic initiation factor 2 (eIF2) on the alpha-subunit. Both insulin (1 nM) and insulin-like growth factor I (IGF-I) (13.2 nM) attenuated the depression of protein synthesis by PIF and the increased phosphorylation of eIF2alpha, by inhibiting the activation (autophosphorylation) of the dsRNA-dependent protein kinase (PKR) by induction of protein phosphatase 1. A low-molecular weight inhibitor of PKR also reversed the depression of protein synthesis by PIF to the same extent, as did insulin and IGF-I. Both insulin and IGF-I-stimulated protein synthesis in the presence of PIF, and this was attenuated by Salubrinal, an inhibitor of phospho eIF2alpha phosphatase, suggesting that at least part of this action was due to their ability to inhibit phosphorylation of eIF2alpha. Both insulin and IGF-I also attenuated the induction of protein degradation in myotubes induced by PIF, this effect was also attenuated by Salubrinal. These results suggest an alternative mechanism involving PKR to explain the effect of insulin and IGF-I on protein synthesis and degradation in skeletal muscle in the presence of catabolic factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The societal cost for the average health authority in the United Kingdom for the care of wet age-related macular degeneration (AMD) has been suggested to be around £7.4 million. It is vital that the best possible care based on the best available evidence is provided to reduce the impact of AMD on patients' lives and the financial cost to the health-care system. This study explored the experiences of AMD patients treated with intravitreal ranibizumab injections. Three semistructured interviews were conducted with seven participants over the course of 18 months. Transcripts were analysed using interpretative phenomenological analysis. Analysis identified four themes: preparing for treatment, the treatment process, patient-provider communication, and results of treatment. Patient experiences highlighted the need to move away from the reliance on letters for information provision, and the need for clearer guidelines about when to cease AMD treatment. Interviews highlighted the need for the inclusion of rigorous qualitative evidence with experiential data in future good clinical practice guideline development for AMD. © The Author(s) 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin-like growth factor-I (IGF-I) has been shown to attenuate protein degradation in murine myotubes induced by angiotensin II through downregulation of the ubiquitin-proteasome pathway, although the mechanism is not known. Angiotensin II is known to upregulate this pathway through a cellular signalling mechanism involving release of arachidonic acid, activation of protein kinase Cα (PKCα), degradation of inhibitor-κB (I-κB) and nuclear migration of nuclear factor-κB (NF-κB), and all of these events were attenuated by IGF-I (13.2 nM). Induction of the ubiquitin-proteasome pathway has been linked to activation of the RNA-activated protein kinase (PKR), since an inhibitor of PKR attenuated proteasome expression and activity in response to angiotensin II and prevented the decrease in the myofibrillar protein myosin. Angiotensin II induced phosphorylation of PKR and of the eukaryotic initiation factor-2 (eIF2) on the α-subunit, and this was attenuated by IGF-I, by induction of the expression of protein phosphatase 1, which dephosphorylates PKR. Release of arachidonic acid and activation of PKCα by angiotensin II were attenuated by an inhibitor of PKR and IGF-I, and the effect was reversed by Salubrinal (15 μM), an inhibitor of eIF2α dephosphorylation, as was activation of PKCα. In addition myotubes transfected with a dominant-negative PKR (PKRΔ6) showed no release of arachidonate in response to Ang II, and no activation of PKCα. These results suggest that phosphorylation of PKR by angiotensin II was responsible for the activation of the PLA2/PKC pathway leading to activation of NF-κB and that IGF-I attenuates protein degradation due to an inhibitory effect on activation of PKR. © 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The object of this study was to summarize information on catabolic factors produced by tumours which lead to tissue catabolism in cancer cachexia and to use this information for the development of effective therapy. The study population was made up of patients with cancer cachexia and weight loss greater than 1 kg month-1. They had a varied range of carcinomas, particularly pancreatic, but also of the breast, ovary, lung, colon and rectum. Cachectic factors were isolated by standard biochemical methods, and the mechanism of tissue catabolism was evaluated in vitro and in vivo. We isolated a 24-kDa sulphated glycoprotein produced by cachexia-inducing murine and human tumours, which induces catabolism of myofibrillar proteins in skeletal muscle and for this reason has been named proteolysis-inducing factor (PIF). PIF was shown to be present in a diverse range of carcinomas in patients whose rate of weight loss exceeded 1.0 kg month-1. Administration of PIF to normal mice produced a rapid decrease in body weight, which arose primarily from a loss of skeletal muscle, accompanied by increased mRNA levels for ubiquitin, the ubiquitin-carrier protein (E214k), and proteasome subunits. This suggests that PIF induces protein catabolism through an increased expression of the key components of the ATP-ubiquitin-dependent proteolytic pathway. The action of PIF was attenuated both in vitro and in vivo by eicosapentaenoic acid (EPA). Oral EPA has been found to stabilize the body weight of patients with advanced pancreatic cancer and, when combined with an energy- and protein-rich nutritional supplement, to produce weight gain arising solely from an increase in lean body mass. Nutritional supplementation alone is unable to reverse the process of muscle wasting in cancer patients, since this arises from activation of the ubiquitin proteasome pathway by PIF, which is independent of nutrient intake. EPA is able to down-regulate the increased expression of this pathway and prevents muscle wasting in cancer patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To investigate laboratory evidence of abnormal angiogenesis, hemorheologic factors, endothelial damage/dysfunction, and age-related macular degeneration (ARMD). DESIGN: Comparative cross-sectional study. PARTICIPANTS: We studied 78 subjects (26 men and 52 women; mean age 74 years; standard deviation [SD] 9.0) with ARMD attending a specialist referral clinic. Subjects were compared with 25 healthy controls (mean age, 71 years; SD, 11). INTERVENTION AND OUTCOME MEASURES: Levels of vascular endothelial growth factor (VEGF, an index of angiogenesis), hemorheologic factors (plasma viscosity, hematocrit, white cell count, hemoglobin, platelets), fibrinogen (an index of rheology and hemostasis), and von Willebrand factor (a marker of endothelial dysfunction) were measured. RESULTS: Median plasma VEGF (225 vs. 195 pg/ml, P = 0.019) and mean von Willebrand factor (124 vs. 99 IU/dl, P = 0.0004) were greater in ARMD subjects than the controls. Mean plasma fibrinogen and plasma viscosity levels were also higher in the subjects (both P < 0.0001). There were no significant differences in other indices between cases and controls. When "dry" (drusen, atrophy, n = 28) and "exudative" (n = 50) ARMD subjects were compared, there was no significant differences in VEGF, fibrinogen, viscosity, or von Willebrand factor levels. There were no significant correlations between the measured parameters. Stepwise multiple regression analysis did not demonstrate any significant clinical predictors (age, gender, smoking, body mass index, history of vascular disease, or hypertension) for plasma VEGF or fibrinogen levels, although smoking status was a predictor of plasma von Willebrand factor levels (P < 0.05). CONCLUSIONS: This study suggests an association between markers of angiogenesis (VEGF), hemorheologic factors, hemostasis, endothelial dysfunction, and ARMD. The interaction between abnormal angiogenesis and the components of Virchow's triad for thrombogenesis may in part contribute to the pathogenesis of ARMD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Proliferative diabetic retinopathy (PDR) may be a response to abnormal angiogenic growth factors such as vascular endothelial growth factor (VEGF), angiopoietin-2 (Ang-2), and the soluble angiopoietin receptor tie-2. The authors hypothesised the following: (a) there are differences in plasma levels of these growth factors in different grades of diabetic retinopathy; and (b) that the effects of intervention with panretinal laser photocoagulation (PRP) for PDR, and angiotensin receptor blockade (using eprosartan) for patients with other grades of diabetic retinopathy will be to reduce levels of the growth factors. Methods: Cross sectional and interventional study (using PRP and eprosartan) in diabetic patients. VEGF, Ang-2, and tie-2 were measured by ELISA. Results: VEGF (p<0.001) and Ang-2 levels (p<0.001) were significantly higher in 93 diabetic patients compared to 20 healthy controls, with the highest levels in grade 2 and grade 3 diabetic retinopathy (p<0.05). Tie-2 was lower in diabetics compared to controls (p = 0.008), with no significant differences between the diabetic subgroups. Overall, VEGF significantly correlated with Ang-2 (p<0.001) and tie-2 (p = 0.004) but the correlation between Ang-2 and tie-2 levels was not significant (p = 0.065). Among diabetic patients only, VEGF levels were significantly correlated with Ang-2 (p<0.001) and tie-2 (p<0.001); the correlation between Ang-2 and tie-2 levels was also significant (p<0.001). There were no statistically significant effects of laser photocoagulation on plasma VEGF, Ang-2, and tie-2 in the 19 patients with PDR, or any effects of eprosartan in the 28 patients with non-proliferative diabetic retinopathy. Conclusion: Increased plasma levels of VEGF and Ang-2, as well as lower soluble tie-2, were found in diabetic patients. The highest VEGF and Ang-2 levels were seen among patients with pre-proliferative and proliferative retinopathy, but there was no relation of tie-2 to the severity of retinopathy. As the majority of previous research into Ang-2 and tie-2 has been in relation to angiogenesis and malignancy, the present study would suggest that Ang-2 and tie-2 may be used as potential indices of angiogenesis in diabetes mellitus (in addition to VEGF) and may help elucidate the role of the angiopoietin/tie-2 system in this condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular endothelial growth factor-A (VEGF) is critical for angiogenesis but fails to induce neovascularization in ischemic tissue lesions in mice lacking endothelial nitric oxide synthase (eNOS). VEGF receptor-2 (VEGFR-2) is critical for angiogenesis, although little is known about the precise role of endothelial VEGFR-1 and its downstream effectors in this process. Here we have used a chimeric receptor approach in which the extracellular domain of the epidermal growth factor receptor was substituted for that of VEGFR-1 (EGLT) or VEGFR-2 (EGDR) and transduced into primary cultures of human umbilical vein endothelial cells (HUVECs) using a retroviral system. Activation of HUVECs expressing EGLT or EGDR induced rapid phosphorylation of eNOS at Ser1177, release of NO, and formation of capillary networks, similar to VEGF. Activation of eNOS by VEGFR-1 was dependent on Tyr794 and was mediated via phosphatidylinositol 3-kinase, whereas VEGFR-2 Tyr951 was involved in eNOS activation via phospholipase Cgamma1. Consistent with these findings, the VEGFR-1-specific ligand placenta growth factor-1 activated phosphatidylinositol 3-kinase and VEGF-E, which is selective for VEGFR-2-activated phospholipase Cgamma1. Both VEGFR-1 and VEGFR-2 signal pathways converged on Akt, as dominant-negative Akt inhibited the NO release and in vitro tube formation induced following activation of EGLT and EGDR. The identification Tyr794 of VEGFR-1 as a key residue in this process provides direct evidence of endothelial VEGFR-1 in NO-driven in vitro angiogenesis. These studies provide new sites of modulation in VEGF-mediated vascular morphogenesis and highlight new therapeutic targets for management of vascular diseases.