7 resultados para cancer chemotherapy

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

PURPOSE: To determine the effectiveness of the polyanionic, metal binding agent D-myo-inositol-1,2,6-triphosphate (alpha trinositol, AT), and its hexanoyl ester (HAT), in tissue wasting in cancer cachexia. METHODS: The anti-cachexic effect was evaluated in the MAC16 tumour model. RESULTS: Both AT and HAT attenuated the loss of body weight through an increase in the nonfat carcass mass due to an increase in protein synthesis and a decrease in protein degradation in skeletal muscle. The decrease in protein degradation was associated with a decrease in activity of the ubiquitin-proteasome proteolytic pathway and caspase-3 and -8. Protein synthesis was increased due to attenuation of the elevated autophosphorylation of double-stranded RNA-dependent protein kinase, and of eukaryotic initiation factor 2alpha together with hyperphosphorylation of eIF4E-binding protein 1 and decreased phosphorylation of eukaryotic elongation factor 2. In vitro, AT completely attenuated the protein degradation in murine myotubes induced by both proteolysis-inducing factor and angiotensin II. CONCLUSION: These results show that AT is a novel therapeutic agent with the potential to alleviate muscle wasting in cancer patients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Recent attention on chemotherapeutic intervention against cancer has been focused on discovering and developing phytochemicals as anticancer agents with improved efficacy, low drug resistance and toxicity, low cost and limited adverse side effects. In this study, we investigated the effects of Curcuma C20-dialdehyde on growth, apoptosis and cell cycle arrest in colon and cervical cancer cell lines. Materials and Methods: Antiproliferative, apoptosis induction, and cell cycle arrest activities of Curcuma C20-dialdehyde were determined by WST cell proliferation assay, flow cytometric Alexa fluor 488-annexin V/propidium iodide (PI) staining and PI staining, respectively. Results: Curcuma C20 dialdehyde suppressed the proliferation of HCT116, HT29 and HeLa cells, with IC50 values of 65.4±1.74 μg/ml, 58.4±5.20 μg/ml and 72.0±0.03 μg/ml, respectively, with 72 h exposure. Flow cytometric analysis revealed that percentages of early apoptotic cells increased in a dose-dependent manner upon exposure to Curcuma C20-dialdehyde. Furthermore, exposure to lower concentrations of this compound significantly induced cell cycle arrest at G1 phase for both HCT116 and HT29 cells, while higher concentrations increased sub-G1 populations. However, the concentrations used in this study could not induce cell cycle arrest but rather induced apoptotic cell death in HeLa cells. Conclusions: Our findings suggest that the phytochemical Curcuma C20-dialdehyde may be a potential antineoplastic agent for colon and cervical cancer chemotherapy and/or chemoprevention. Further studies are needed to characterize the drug target or mode of action of the Curcuma C20-dialdehyde as an anticancer agent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aberrant tyrosine protein kinase activity has been implicated in the formation and maintenance of malignancy and so presents a potential target for cancer chemotherapy. Quercetin, a naturally occuring flavonoid, inhibits the tyrosine protein kinase encoded by the Rous sarcoma virus but also exhibits many other effects. Analogues of this compound were synthesised by the acylation of suitable 2-hydroxyacetophenones with appropriately substituted aromatic (or alicyclic) acid chlorides, followed by base catalysed rearrangement to the 1-(2-hydroxyphenyl)-3-phenylpropan-1,3-diones. Acid catalysed ring closure furnished flavones. The majority of the 1-(2-hydroxyphenyl)-3-phenylpropan-1,3-diones were shown by NMR to exist in the enol form. This was supported by the crystal structure of 1-(2-hydroxy-4-methoxyphenyl)-3-phenylpropan-1,3-dione. In contrast, 1.(4,6-dimethoxy-2-hydroxyphenyl)-3-phenylpropan-1,3-dione did not exhibit keto-enol tautomerism in the NMR spectrum and was shown in its crystal structure to assume a twisted conformation. Assessment of the biological activity of the analogues of quercetin was carried out using whole cells and the kinase domain of the tyrosine protein kinase encoded by the Abelson murine leukaemia virus, ptab150 kinase. Single cell suspension cultures and clonogenic potential of murine fibroblasts transformed by the Abelson Murine leukaemia virus (ANN-1 cells) did not indicate the existence of any structure activity relationship required for cytotoxicity or cytostasis. No selective toxicity was apparent when the `normal' parent cell line, (3T3), was used to assess the cytotoxic potential of quercetin. The ICS50 for these compounds were generally in the region of 1-100M. The potential for these compounds to inhibit ptab150 kinase was determined. A definite substitution requirement emerged from these experiments indicating a necessity for substituents in the A ring or in the 3-position of the flavone nucleus. Kinetic data showed these inhibitors to be competitive for ATP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inhibition of dsRNA-activated protein kinase (PKR), not only attenuates muscle atrophy in a murine model of cancer cachexia (MAC16), but it also inhibits tumour growth. In vitro the PKR inhibitor maximally inhibited growth of MAC16 tumour cells at a concentration of 200 nM, which was also maximally effective in attenuating phosphorylation of PKR and of eukaryotic initiation factor (eIF)2 on the a-subunit. There was no effect on the growth of the MAC13 tumour, which does not induce cachexia, even at concentrations up to 1,000 nM. There was constitutive phosphorylation of PKR and eIF2a in the MAC16, but not in the MAC13 tumour, while levels of total PKR and eIF2a were similar. There was constitutive upregulation of nuclear factor-?B (NF-?B) in the MAC16 tumour only, and this was attenuated by the PKR inhibitor, suggesting that it arose from activation of PKR. In MAC16 alone the PKR inhibitor also attenuated expression of the 20S proteasome. The PKR inhibitor potentiated the cytotoxicity of both 5-fluorouracil and gemcitabine to MAC16 cells in vitro. These results suggest that inhibitors of PKR may be useful therapeutic agents against tumours showing increased expression of PKR and constitutive activation of NF-?B, and may also prove useful in sensitising tumours to standard chemotherapeutic agents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Drug export from cells is a major factor in the acquisition of cellular resistance to antimicrobial and cancer chemotherapy, and poses a significant threat to future clinical management of disease. Many of the proteins that catalyse drug efflux do so with remarkably low substrate specificity, a phenomenon known as multidrug transport. For these reasons we need a greater understanding of drug recognition and transport in multidrug pumps to inform research that attempts to circumvent their action. Structural and computational studies have been heralded as being great strides towards a full elucidation of multidrug recognition and transport. In this review we summarise these advances and ask how close we are to a molecular understanding of this remarkable phenomenon. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cachexia is a wasting phenomenon that often accompanies malignant disease. Its manifestation is associated with shortened survival and reduced responsiveness to anti-tumour therapy and as yet there is no established, effective amelioratory treatment. The MAC 16 model of cancer cachexia has been shown by many studies to closely mirror the human condition. Thus, cachexia is mediated by the presence of a small, slow-growing solid tumour that is mainly resistant to chemotherapy. In addition, the condition is largely attributable to aberrations in metabolic processes, while weight loss due to anorexia is negligible. Cachexia induced by the MAC 16 tumour, has been shown to be mediated by the production of tumour-derived circulatory catabolic factors, and the further elucidation of the structure of these molecules contributes towards the main content of this report. Thus, a factor with in vitro lipid-mobilising activity has been purified from the MAC 16 tumour, and has been found to have similarities to tumour-derived lipolytic factors published to date. Further work demonstrated that this factor was also purifiable from the urine of a patient with pancreatic cancer, and that it was capable of inducing weight loss in non tumour-bearing mice. Sequence analysis of the homogeneous material revealed an identity to Zn-α-2-glycoprotein, the significance of which is discussed. An additional factor, first detected as a result of its specific reactivity with a monoclonal antibody produced by fusion of splenocytes from MAC 16 tumour-bearing mice with mouse BALB/c myeloma cells, was identified as a co-purificant during studies to isolate the lipolytic factor. Subsequent purification of this material to homogeneity resulted in the determination of 18 of the N-terminal amino acids and revealed the highly glycosylated nature of its structure. Thus, this material (P24) was found to have an apparent molecular mass of 24kD of which 2kD was due to protein, while the remainder (92%) was due to the presence of carbohydrate groups. Sequence analysis of the protein core of P24 revealed an identity with Streptococcal pre-absorbing antigen (PA-Ag) in 11 of the amino acids, and the significance of this is discussed. P24 was shown to induce muscle protein breakdown in vitro and to induce cachexia in vivo, as measured by the depletion of fat (29%) and muscle (14%) tissue in the absence of a reduction of food and water intake. Further studies revealed that the same material was purifiable from the urine of patients with pancreatic cancer and was found to be detectable in the urine of cancer patients with weight loss greater than l.Skg/month. Thus, cachexia induced by the MAC 16 tumour in mice and by malignant disease in humans may be induced by similar mediators. Attempts to isolate the gene for P24 using information provided by the N-terminal protein sequence were unsuccessful. This was probably due to the low abundance o[ the material, as determined by protein purification studies; and the nature of the amino acids of the N-terminal sequence, which conferred a high degree o[ degeneracy to the oligonucleotides designed for the polymerase chain reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing prevalence of breast cancer (BC) in different parts of the world, particularly in the UK, highlights the importance of research into the aetiology and pathology of the disease. BC is the most common malignancy affecting women worldwide. Aquaporins (AQPs) are membrane protein channels that regulate cellular water flow. Recently, studies have demonstrated that expression of AQP3 is up-regulated in cancerous breast tissue. The present study examines the role of AQP3 in BC cell biology. Examination of clinical cases of BC showed higher AQP3 gene and protein expression in cancer tissues compared to healthy border tissues. In distinct clinicopathological groups however there were no differences observed with regards to AQP3 expression, suggesting that AQP3 expression may not be a predictor of lymph node infiltration or tumour grade. shRNA technology was used to knockdown gene expression of AQP3 in the invasive MDA-MB-231 BC cellular model. Cellular proliferation, migration, invasion, adhesion and response to the 5- fluorouracil (5-FU) based chemotherapy treatment were investigated in parental and knockdown cell line. AQP3 knockdown cells showed reduction in cellular proliferation, migration, invasion and increase in cell sensitivity to 5-FU compared with wild type (WT) or scrambled control (SC) cells. The effects of AQP3 knockdown on cellular glycolytic ability and ATP cellular content were quantified. Indirect glucose uptake was also measured by quantifying reconditioned media. AQP3 knockdown cells showed significantly lower levels of glucose uptake as compared to WT or SC. However there was no difference in the glycolytic ability and ATP content of the cells suggesting AQP3 has no role in cancer cell energetics. These data collectively suggest AQP3 expression is associated with the BC disease clinically and plays a role in multiple important aspects of BC pathophysiology, thus AQP3 represents a novel target for therapeutic intervention.