14 resultados para calix[4]arenes, calix[8]arenes, self-assembly

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High surface area nanosized α-alumina has been obtained by thermally treating a sol-gel-derived mesophase at 1200 C; the mesophase was synthesized by a sol-gel route involving evaporation induced self-assembly (EISA) of a hydrolyzed gel from Al-tri-sec-butoxide in s-BuOH in the presence of a nonionic surfactant (EO20PO70EO20), HCl as catalyst, and water (H2O/Al = 6). The activated material renders moderate surface areas of about 8.4-10 m2 g-1, associated with significant crystallite coarsening. The key aspect to produce smaller crystallites is making the mesophase more resistant to coarsening. This was achieved by enhancing the condensation step by treating the hydrolyzed gel with tetrabutyl ammonium hydroxide (TBAOH) before evaporation. The characteristics of the mesophase indicate condensation of the primary particles with less AlO5 unsaturated sites, at the expense of a lower solid yield due to small crystallites dissolution. The activated TBAOH condensed EISA material is composed of α-alumina aggregated crystallites of about 60-100 nm, and the material possesses surface areas ranging from 16 to 24 m2 g -1 due to the improved resistance to coarsening. At least two aspects are suggested to play a role in this. The worm-hole morphology of the mesophase aggregates yields high particle coordination, which favors densification rather than coarsening. Furthermore, the decrease of the AlO5 defect sites by the TBAOH condensation makes the mesophase less reactive and consequently more resistant to coarsening. © 2013 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study focuses on the synthesis of amphiphilic block copolymers containing poly(glycerol monomethacrylate) (PGMMA), showing the advantages of a protection/deprotection strategy based on silyl groups. PGMMA blocks were synthesized via ATRP started by a double functional poly(dimethyl siloxane) (PDMS) macroinitiator of molecular weight ≈7000 g mol-1. The resulting triblock copolymers were characterized by low polydispersity (generally ≤1.1) and their aggregation concentration in water was essentially dominated by the PDMS block length (critical aggregation concentration substantially invariant for GMMA degree of polymerization ≥30). For GMMA blocks with DP > 50, the self-assembly in water produced 35-50 nm spherical micelles, while shorter hydrophilic chains produced larger aggregates apparently displaying worm-like morphologies. Block copolymers with long GMMA chains (DP ≈ 200) produced particularly stable micellar aggregates, which were then selected for a preliminary assessment of the possibility of adsorption of plasma proteins (albumin and fibrinogen); using diffusion NMR as an analytical technique, no significant adsorption was recorded both on micelles and on soluble PGMMA employed as a control, indicating the possibility of a "stealth" behaviour. This journal is © 2013 The Royal Society of Chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two series of poly(ethylene oxide)-tetrapeptide conjugates have been prepared using a “Click” reaction between an alkyne-modified tetra(phenylalanine) or tetra(valine) and various azide-terminated poly(ethylene oxide) (PEO) oligomers. Three different PEO precursors were used to prepare these conjugates, with number-average molecular weights of 350, 1200, and 1800 Da. Assembly of mPEO-F4-OEt and mPEO-V4-OEt conjugates was achieved by dialysis of a THF solution of the conjugate against water or by direct aqueous rehydration of a thin film. The PEO length has a profound effect on the outcome of the self-assembly, with the F4 conjugates giving rise to nanotubes, fibers, and wormlike micelles, respectively, as the length of the PEO block is increased. For the V4 series, the propensity to form ß-sheets dominates, and hence, the self-assembled structures are reminiscent of those formed by peptides alone, even at the longer PEO lengths. Thus, this systematic study demonstrates that the self-assembly of PEO-peptides depends on both the nature of the peptides and the relative PEO block length.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To help understand how sugar interactions with proteins stabilise biomolecular structures, we compare the three main hypotheses for the phenomenon with the results of long molecular dynamics simulations on lysozyme in aqueous trehalose solution (0.75 M). We show that the water replacement and water entrapment hypotheses need not be mutually exclusive, because the trehalose molecules assemble in distinctive clusters on the surface of the protein. The flexibility of the protein backbone is reduced under the sugar patches supporting earlier findings that link reduced flexibility of the protein with its higher stability. The results explain the apparent contradiction between different experimental and theoretical results for trehalose effects on proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stirring of perthiolated β-cyclodextrin in water yields cross-linked hollow capsules ca. 50 nm in diameter, which can be used for encapsulation and controlled release of large molecules as shown using Reichardt's dye. © 2009 The Royal Society of Chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer beads have attracted considerable interest for use in catalysis, drug delivery, and photo­nics due to their particular shape and surface morphology. Electrospinning, typically used for producing nanofibers, can also be used to fabricate polymer beads if the solution has a sufficiently low concentration. In this work, a novel approach for producing more uniform, intact beads is presented by electrospinning self-assembled block copolymer (BCP) solutions. This approach allows a relatively high polymer concentration to be used, yet with a low degree of entanglement between polymer chains due to microphase separation of the BCP in a selective solvent system. Herein, to demonstrate the technology, a well-studied polystyrene-poly(ethylene butylene)–polystyrene triblock copolymer is dissolved in a co-solvent system. The effect of solvent composition on the characteristics of the fibers and beads is intensively studied, and the mechanism of this fiber-to-bead is found to be dependent on microphase separation of the BCP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Various lubricating body fluids at tissue interfaces are composed mainly of combinations of phospholipids and amphipathic apoproteins. The challenge in producing synthetic replacements for them is not replacing the phospholipid, which is readily available in synthetic form, but replacing the apoprotein component, more specifically, its unique biophysical properties rather than its chemistry. The potential of amphiphilic reactive hypercoiling behaviour of poly(styrene-alt-maleic acid) (PSMA) was studied in combination with two diacylphosphatidylcholines (PC) of different chain lengths in aqueous solution. The surface properties of the mixtures were characterized by conventional Langmuir-Wilhelmy balance (surface pressure under compression) and the du Noüy tensiometer (surface tension of the non-compressed mixtures). Surface tension values and 31P NMR demonstrated that self-assembly of polymer-phospholipid mixtures were pH and concentration-dependent. Finally, the particle size and zeta potential measurements of this self-assembly showed that it can form negatively charged nanosized structures that might find use as drug or lipids release systems on interfaces such as the tear film or lung interfacial layers. The structural reorganization was sensitive to the alkyl chain length of the PC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation of a steam-based hydrothermally stable transition alumina is reported. The gel was derived from a synthetic sol-gel route where Al-tri-sec-butoxide is hydrolysed in the presence of a non-ionic surfactant (EO20PO70EO20), HCl as the catalyst and water (H2O/Al = 6); the condensation was enhanced by treating the hydrolysed gel with tetrabutylammonium hydroxide (TBAOH), after which it was dried at 60 °C by solvent evaporation. The so-obtained mesophase was crystallized under argon at 1200 °C (1 h) producing a transition alumina containing δ/α, and possibly θ, alumina phases. Due to its surface acidity, the pyrolysis conditions transform the block copolymer into a cross-linked char structure that embeds the alumina crystallites. Calcination at 650 °C generates a fully porous material by burning the char; a residual carbon of 0.2 wt.% was found, attributed to the formation of surface (oxy)carbides. As a result, this route produces a transition alumina formed by nanoparticles of about 30 nm in size on average, having surface areas in the range of 59-76 m2 g-1 with well-defined mesopores centered at 14 nm. The material withstands steam at 900 °C with a relative surface area rate loss lower than those reported for δ-aluminas, the state-of-the-art MSU-X γ-alumina and other pure γ-aluminas. The hydrothermal stability was confirmed under relevant CH4 steam reforming conditions after adding Ni; a much lower surface area decay and higher CH4 conversion compared to a state-of-the-art MSU-X based Ni catalyst were observed. Two effects are important in explaining the properties of such an alumina: the char protects the particles against sintering, however, the dominant effect is provided by the TBAOH treatment that makes the mesophase more resistant to coarsening and sintering. This journal is © the Partner Organisations 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tin oxide is considered to be one of the most promising semiconductor oxide materials for use as a gas sensor. However, a simple route for the controllable build-up of nanostructured, sufficiently pure and hierarchical SnO2 structures for gas sensor applications is still a challenge. In the current work, an aqueous SnO2 nanoparticulate precursor sol, which is free of organic contaminants and sorbed ions and is fully stable over time, was prepared in a highly reproducible manner from an alkoxide Sn(OR)4 just by mixing it with a large excess of pure neutral water. The precursor is formed as a separate liquid phase. The structure and purity of the precursor is revealed using XRD, SAXS, EXAFS, HRTEM imaging, FTIR, and XRF analysis. An unconventional approach for the estimation of the particle size based on the quantification of the Sn-Sn contacts in the structure was developed using EXAFS spectroscopy and verified using HRTEM. To construct sensors with a hierarchical 3D structure, we employed an unusual emulsification technique not involving any additives or surfactants, using simply the extraction of the liquid phase, water, with the help of dry butanol under ambient conditions. The originally generated crystalline but yet highly reactive nanoparticles form relatively uniform spheres through self-assembly and solidify instantly. The spheres floating in butanol were left to deposit on the surface of quartz plates bearing sputtered gold electrodes, producing ready-for-use gas sensors in the form of ca. 50 μm thick sphere-based-films. The films were dried for 24 h and calcined at 300°C in air before use. The gas sensitivity of the structures was tested in the temperature range of 150-400°C. The materials showed a very quickly emerging and reversible (20-30 times) increase in electrical conductivity as a response to exposure to air containing 100 ppm of H2 or CO and short (10 s) recovery times when the gas flow was stopped.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new poly(ethylene oxide)-tetraphenylalanine polymer-peptide conjugate has been prepared via a “click” reaction between an alkyne-modified peptide and an azide-terminated PEO oligomer. Self-assembled nanotubes are formed after dialysis of a THF solution of this polymer-peptide conjugate against water. The structure of these nanotubes has been probed by circular dichroism, IR, TEM, and SAXS. From these data, it is apparent that self-assembly involves the formation of antiparallel ß-sheets and p-p-stacking. Nanotubes are formed at concentrations between 2 and 10 mg mL-1. Entanglement between adjacent nanotubes occurs at higher concentrations, resulting in the formation of soft hydrogels. Gel strength increases at higher polymer-peptide conjugate concentration, as expected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient route to stabilize alumina mesophases derived from evaporation-induced self-assembly is reported after investigating various aspects in-depth: influence of the solvent (EtOH, s-BuOH, and t-BuOH) on the textural and structural properties of the mesophases based on aluminum tri-sec-butoxide (ATSB), synthesis reproducibility, role of nonvolatile acids, and the crystallization and thermal stability of the crystalline counterparts. Mesophase specific surface area and pore uniformity depend notably on the solvent; s-BuOH yields the highest surface area and pore uniformity. The optimal mesophase synthesis is reproducible with standard deviations in the textural parameters below 5%. The most pore-uniform mesophases from the three solvents were thermally activated at 1023 K to crystallize them into γ-alumina. The s-BuOH mesophase is remarkably thermally stable, retaining the mesoscopic wormhole order with 300 m2/g (0.45 cm3/g) and an increased acidic site density. These features are not obtained with EtOH or t-BuOH, where agglomerated γ-Al2O3 crystallites are formed with lower surface areas and broader pore size distributions. This was rationalized by the increase of the hydrolysis rate using EtOH and t-BuOH. t-BuOH dehydrates under the synthesis conditions or reacts with HCl, situations that increase the water concentration and rate of hydrolysis. It was found that EtOH exchanges rapidly, producing a highly reactive Al-ethoxide, thus enhancing the hydrolysis rate as well. Particle heterogeneity with random packing of fibrous and wormhole morphologies, attributed to the high hydrolysis rate, was observed for mesophases derived from both solvents. Such a low particle coordination favors coarsening with enlargement of the pore size distribution upon thermal treatment, explaining the lower thermal stability. Controlled hydrolysis and formation of low-polymerized Al species in s-BuOH are possibly responsible for the adequate assembly onto the surfactant. This was verified by the formation of a regular distribution of relatively size-uniform nanoparticles in the mesophase; high particle coordination prevents coarsening, favors densification, and maintains a relatively uniform pore size distribution upon thermal treatment. The acid removal in the evaporation is another key factor to promote network condensation in this route. © 2013 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the pressure continues to grow on Diamond and the world's synchrotrons for higher throughput of diffraction experiments, new and novel techniques are required for presenting micron dimension crystals to the X ray beam. Currently this task is both labour intensive and primarily a serial process. Diffraction measurements typically take milliseconds but sample preparation and presentation can reduce throughput down to 4 measurements an hour. With beamline waiting times as long as two years it is of key importance for researchers to capitalize on available beam time, generating as much data as possible. Other approaches detailed in the literature [1] [2] [3] are very much skewed towards automating, with robotics, the actions of a human protocols. The work detailed here is the development and discussion of a bottom up approach relying on SSAW self assembly, including material selection, microfluidic integration and tuning of the acoustic cavity to order the protein crystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the pressure continues to grow on Diamond and the world's synchrotrons for higher throughput of diffraction experiments, new and novel techniques are required for presenting micron dimension crystals to the X ray beam. Currently this task is both labour intensive and primarily a serial process. Diffraction measurements typically take milliseconds but sample preparation and presentation can reduce throughput down to 4 measurements an hour. With beamline waiting times as long as two years it is of key importance for researchers to capitalize on available beam time, generating as much data as possible. Other approaches detailed in the literature [1] [2] [3] are very much skewed towards automating, with robotics, the actions of a human protocols. The work detailed here is the development and discussion of a bottom up approach relying on SSAW self assembly, including material selection, microfluidic integration and tuning of the acoustic cavity to order the protein crystals.