16 resultados para calibration of rainfall-runoff models
em Aston University Research Archive
Resumo:
Satellite information, in combination with conventional point source measurements, can be a valuable source of information. This thesis is devoted to the spatial estimation of areal rainfall over a region using both the measurements from a dense and sparse network of rain-gauges and images from the meteorological satellites. A primary concern is to study the effects of such satellite assisted rainfall estimates on the performance of rainfall-runoff models. Low-cost image processing systems and peripherals are used to process and manipulate the data. Both secondary as well as primary satellite images were used for analysis. The secondary data was obtained from the in-house satellite receiver and the primary data was obtained from an outside source. Ground truth data was obtained from the local Water Authority. A number of algorithms are presented that combine the satellite and conventional data sources to produce areal rainfall estimates and the results are compared with some of the more traditional methodologies. The results indicate that the satellite cloud information is valuable in the assessment of the spatial distribution of areal rainfall, for both half-hourly as well as daily estimates of rainfall. It is also demonstrated how the performance of the simple multiple regression rainfall-runoff model is improved when satellite cloud information is used as a separate input in addition to rainfall estimates from conventional means. The use of low-cost equipment, from image processing systems to satellite imagery, makes it possible for developing countries to introduce such systems in areas where the benefits are greatest.
Resumo:
This review attempts to provide an insightful perspective on the role of time within neural network models and the use of neural networks for problems involving time. The most commonly used neural network models are defined and explained giving mention to important technical issues but avoiding great detail. The relationship between recurrent and feedforward networks is emphasised, along with the distinctions in their practical and theoretical abilities. Some practical examples are discussed to illustrate the major issues concerning the application of neural networks to data with various types of temporal structure, and finally some highlights of current research on the more difficult types of problems are presented.
Resumo:
Linear models reach their limitations in applications with nonlinearities in the data. In this paper new empirical evidence is provided on the relative Euro inflation forecasting performance of linear and non-linear models. The well established and widely used univariate ARIMA and multivariate VAR models are used as linear forecasting models whereas neural networks (NN) are used as non-linear forecasting models. It is endeavoured to keep the level of subjectivity in the NN building process to a minimum in an attempt to exploit the full potentials of the NN. It is also investigated whether the historically poor performance of the theoretically superior measure of the monetary services flow, Divisia, relative to the traditional Simple Sum measure could be attributed to a certain extent to the evaluation of these indices within a linear framework. Results obtained suggest that non-linear models provide better within-sample and out-of-sample forecasts and linear models are simply a subset of them. The Divisia index also outperforms the Simple Sum index when evaluated in a non-linear framework. © 2005 Taylor & Francis Group Ltd.
Resumo:
This paper examines the strategic implications of resource allocation models (RAMs). Four interrelated aspects of resource allocation are discussed: degree of centralisation, locus of strategic direction, cross-subsidy, and locus of control. The paper begins with a theoretical overview of these concepts, locating the study in the contexts of both strategic management literature and the university. The concepts are then examined empirically, drawing upon a longitudinal study of three UK universities, Warwick, London School of Economics and Political Science (LSE), and Oxford Brookes. Findings suggest that RAMs are historically and culturally situated within the context of each university and this is associated with different patterns of strategic direction and forms of strategic control. As such, the RAM in use may be less a matter of best practice than one of internal fit. The paper concludes with some implications for theory and practice by discussing the potential trajectories of each type of RAM.
Resumo:
This preliminary report describes work carried out as part of work package 1.2 of the MUCM research project. The report is split in two parts: the ?rst part (Sections 1 and 2) summarises the state of the art in emulation of computer models, while the second presents some initial work on the emulation of dynamic models. In the ?rst part, we describe the basics of emulation, introduce the notation and put together the key results for the emulation of models with single and multiple outputs, with or without the use of mean function. In the second part, we present preliminary results on the chaotic Lorenz 63 model. We look at emulation of a single time step, and repeated application of the emulator for sequential predic- tion. After some design considerations, the emulator is compared with the exact simulator on a number of runs to assess its performance. Several general issues related to emulating dynamic models are raised and discussed. Current work on the larger Lorenz 96 model (40 variables) is presented in the context of dimension reduction, with results to be provided in a follow-up report. The notation used in this report are summarised in appendix.
Resumo:
The paper presents a comparison between the different drag models for granular flows developed in the literature and the effect of each one of them on the fast pyrolysis of wood. The process takes place on an 100 g/h lab scale bubbling fluidized bed reactor located at Aston University. FLUENT 6.3 is used as the modeling framework of the fluidized bed hydrodynamics, while the fast pyrolysis of the discrete wood particles is incorporated as an external user defined function (UDF) hooked to FLUENT’s main code structure. Three different drag models for granular flows are compared, namely the Gidaspow, Syamlal O’Brien, and Wen-Yu, already incorporated in FLUENT’s main code, and their impact on particle trajectory, heat transfer, degradation rate, product yields, and char residence time is quantified. The Eulerian approach is used to model the bubbling behavior of the sand, which is treated as a continuum. Biomass reaction kinetics is modeled according to the literature using a two-stage, semiglobal model that takes into account secondary reactions.
Resumo:
Methods for understanding classical disordered spin systems with interactions conforming to some idealized graphical structure are well developed. The equilibrium properties of the Sherrington-Kirkpatrick model, which has a densely connected structure, have become well understood. Many features generalize to sparse Erdös- Rényi graph structures above the percolation threshold and to Bethe lattices when appropriate boundary conditions apply. In this paper, we consider spin states subject to a combination of sparse strong interactions with weak dense interactions, which we term a composite model. The equilibrium properties are examined through the replica method, with exact analysis of the high-temperature paramagnetic, spin-glass, and ferromagnetic phases by perturbative schemes. We present results of replica symmetric variational approximations, where perturbative approaches fail at lower temperature. Results demonstrate re-entrant behaviors from spin glass to ferromagnetic phases as temperature is lowered, including transitions from replica symmetry broken to replica symmetric phases. The nature of high-temperature transitions is found to be sensitive to the connectivity profile in the sparse subgraph, with regular connectivity a discontinuous transition from the paramagnetic to ferromagnetic phases is apparent.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT
Resumo:
Calibration of consumer knowledge of the web refers to the correspondence between accuracy and confidence in knowledge of the web. Being well-calibrated means that a person is realistic in his or her assessment of the level of knowledge that he or she possesses. This study finds that involvement leads to better calibration and that calibration is higher for procedural knowledge and common knowledge, as compared to declarative knowledge and specialized knowledge. Neither usage, nor experience, has any effect on calibration of knowledge of the web. No difference in calibration is observed between genders. But, in agreement with previous findings, this study also finds that males are more confident in their knowledge of the web. The results point out that calibration could be more a function of knowledge-specific factors and less that of individual-specific factors. The study also identifies flow and frustration with the web as consequences of calibration of knowledge of the web and draws the attention of future researchers to examine these aspects.
Resumo:
Requirements-aware systems address the need to reason about uncertainty at runtime to support adaptation decisions, by representing quality of services (QoS) requirements for service-based systems (SBS) with precise values in run-time queryable model specification. However, current approaches do not support updating of the specification to reflect changes in the service market, like newly available services or improved QoS of existing ones. Thus, even if the specification models reflect design-time acceptable requirements they may become obsolete and miss opportunities for system improvement by self-adaptation. This articles proposes to distinguish "abstract" and "concrete" specification models: the former consists of linguistic variables (e.g. "fast") agreed upon at design time, and the latter consists of precise numeric values (e.g. "2ms") that are dynamically calculated at run-time, thus incorporating up-to-date QoS information. If and when freshly calculated concrete specifications are not satisfied anymore by the current service configuration, an adaptation is triggered. The approach was validated using four simulated SBS that use services from a previously published, real-world dataset; in all cases, the system was able to detect unsatisfied requirements at run-time and trigger suitable adaptations. Ongoing work focuses on policies to determine recalculation of specifications. This approach will allow engineers to build SBS that can be protected against market-caused obsolescence of their requirements specifications. © 2012 IEEE.
Resumo:
The article explores the possibilities of formalizing and explaining the mechanisms that support spatial and social perspective alignment sustained over the duration of a social interaction. The basic proposed principle is that in social contexts the mechanisms for sensorimotor transformations and multisensory integration (learn to) incorporate information relative to the other actor(s), similar to the "re-calibration" of visual receptive fields in response to repeated tool use. This process aligns or merges the co-actors' spatial representations and creates a "Shared Action Space" (SAS) supporting key computations of social interactions and joint actions; for example, the remapping between the coordinate systems and frames of reference of the co-actors, including perspective taking, the sensorimotor transformations required for lifting jointly an object, and the predictions of the sensory effects of such joint action. The social re-calibration is proposed to be based on common basis function maps (BFMs) and could constitute an optimal solution to sensorimotor transformation and multisensory integration in joint action or more in general social interaction contexts. However, certain situations such as discrepant postural and viewpoint alignment and associated differences in perspectives between the co-actors could constrain the process quite differently. We discuss how alignment is achieved in the first place, and how it is maintained over time, providing a taxonomy of various forms and mechanisms of space alignment and overlap based, for instance, on automaticity vs. control of the transformations between the two agents. Finally, we discuss the link between low-level mechanisms for the sharing of space and high-level mechanisms for the sharing of cognitive representations. © 2013 Pezzulo, Iodice, Ferraina and Kessler.
Resumo:
This study examines the effect of blood absorption on the endogenous fluorescence signal intensity of biological tissues. Experimental studies were conducted to identify these effects. To register the fluorescence intensity, the fluorescence spectroscopy method was employed. The intensity of the blood flow was measured by laser Doppler flowmetry. We proposed one possible implementation of the Monte Carlo method for the theoretical analysis of the effect of blood on the fluorescence signals. The simulation is constructed as a four-layer skin optical model based on the known optical parameters of the skin with different levels of blood supply. With the help of the simulation, we demonstrate how the level of blood supply can affect the appearance of the fluorescence spectra. In addition, to describe the properties of biological tissue, which may affect the fluorescence spectra, we turned to the method of diffuse reflectance spectroscopy (DRS). Using the spectral data provided by the DRS, the tissue attenuation effect can be extracted and used to correct the fluorescence spectra.
Resumo:
We propose a mathematically well-founded approach for locating the source (initial state) of density functions evolved within a nonlinear reaction-diffusion model. The reconstruction of the initial source is an ill-posed inverse problem since the solution is highly unstable with respect to measurement noise. To address this instability problem, we introduce a regularization procedure based on the nonlinear Landweber method for the stable determination of the source location. This amounts to solving a sequence of well-posed forward reaction-diffusion problems. The developed framework is general, and as a special instance we consider the problem of source localization of brain tumors. We show numerically that the source of the initial densities of tumor cells are reconstructed well on both imaging data consisting of simple and complex geometric structures.