13 resultados para calcium-activated potassium channel
em Aston University Research Archive
Resumo:
The effects of extracellular application of arginine vasopressin (AVP) upon membrane currents in L6 skeletal myocytes was investigated using the whole-cell configuration of the patch-clamp technique. At O mV AVP produced large amplitude, transient outward currents that reversed when the clamping potential was changed to -100 mV (negative to EK) The effects of alterations in the extracellular K+ concentration upon the current reversal potential suggested that the current elicited by AVP was carried mainly by K+ ions. Intracellular dialysis with 10 μM inositol 1,4,5-trisphosphate (InsP3) elicited similar currents but only in 6/14 cells. Inclusion of 5 mg ml-1 heparin in the intracellular solutions was ineffective at inhibiting the current responses to AVP. The AVP-induced current was totally abolished when the intracellular EGTA concentration was increased from 0.05 mM to 10 mM or Ca2+ was removed from the extracellular perfusing solution. These results suggest that AVP produces activation of a Ca2+-sensitive K+ conductance in L6 skeletal myocytes by a process dependent upon extracellular Ca2+ and not intracellular Ca2+ release. © 1995 Academic Press. All rights reserved.
Resumo:
Aim - The aim of the study was to determine the potential for KV1 potassium channel blockers as inhibitors of human neoinitimal hyperplasia. Methods and results - Blood vessels were obtained from patients or mice and studied in culture. Reverse transcriptasepolymerase chain reaction and immunocytochemistry were used to detect gene expression. Whole-cell patch-clamp, intracellular calcium measurement, cell migration assays, and organ culture were used to assess channel function. KV1.3 was unique among the KV1 channels in showing preserved and up-regulated expression when the vascular smooth muscle cells switched to the proliferating phenotype. There was strong expression in neointimal formations. Voltage-dependent potassium current in proliferating cells was sensitive to three different blockers of KV1.3 channels. Calcium entry was also inhibited. All three blockers reduced vascular smooth muscle cell migration and the effects were non-additive. One of the blockers (margatoxin) was highly potent, suppressing cell migration with an IC of 85 pM. Two of the blockers were tested in organ-cultured human vein samples and both inhibited neointimal hyperplasia. Conclusion - KV1.3 potassium channels are functional in proliferating mouse and human vascular smooth muscle cells and have positive effects on cell migration. Blockers of the channels may be useful as inhibitors of neointimal hyperplasia and other unwanted vascular remodelling events. © 2010 The Author.
Resumo:
It has been shown that acute administration of ecothiopate iodine in vivo caused an approximate 80% depression of acetylcholinesterase activity in the diaphragms of mice. Inhibition of acetylcholinesterase was accompanied by an influx of calcium at the junctional region of the diaphragm, which continued during subsequent progressive development of a severe myopathy located in the same region. Myopathy was accompanied by loss of creatine kinase from the muscle and was represented, at the light microscope level, by hypercontraction, Procion Yellow staining and loss of cross striations within the muscle fibres. It appeared to reach a point of maximum severity approximately 3-6 hours after ecothiopate administration and then, by means of some repair/regeneration process, regained an apparently normal morphology within 72 hours of the intoxication. At the ultrastructural level, ecothiopate-induced myopathy was recognised by loss of Z-lines, swelling and vacuolation of mitochondria and sarcoplasmic reticulum, dissarray of myofilaments, crystal formation, and sometimes, by the complete obliteration of sarcomeric structure. The development of myopathy in vitro was shown to be nerve-mediated and to require a functional acetylcholine receptor for its development It was successfully treated therapeutically in vivo by pyridine-2-aldoxime methiodide and prophylactically by pyridostigmine bromide. However, the use of a range of membrane-on channel blockers, and of leupeptin, an inhibitor of calcium-activated-neutral-protease, have been unsuccessful in the prevention of ecothiopate-induced myopathy.
Resumo:
Cancer is caused by defects in the signalling mechanisms that govern cell proliferation and apoptosis. It is well known that calcium-dependent signalling pathways play a critical role in cell regulation. A tight control of calcium homeostasis by transporters and channel proteins is required to assure a proper functioning of the calcium-sensitive signal transduction pathways that regulate cell growth and apoptosis. The Plasma Membrane Calcium ATPase 2 (PMCA2) has been recently identified as a negative regulator of apoptosis that can play a significant role in cancer progression by conferring cells resistance to apoptosis. We have previously reported an inhibitory interaction between PMCA2 and the calcium-activated signalling molecule calcineurin in breast cancer cells. Here we demonstrate that disruption of the PMCA2/calcineurin interaction in a variety of human breast cancer cells results in activation of the calcineurin/NFAT pathway, up-regulation in the expression of the pro-apoptotic protein Fas Ligand, and in a concomitant loss of cell viability. Reduction in cell viability is the consequence of an increase in cell apoptosis. Impairment of the PMCA2/calcineurin interaction enhances paclitaxel-mediated cytotoxicity of breast tumoral cells. Our results suggest that therapeutic modulation of the PMCA2/calcineurin interaction might have important clinical applications to improve current treatments for breast cancer patients.
Resumo:
Changes in the pattern of activity of neurones within the basal ganglia are relevant in the pathophysiology and symptoms of Parkinson’s disease. The globus pallidus (GP) – subthalamic nucleus (STN) network has been proposed to form a pacemaker driving regenerative synchronous bursting activity. In order to test whether this activity can be sustained in vitro a 20o parasagittal slice of mouse midbrain was developed which preserved functional connectivity between the STN and GP. Mouse STN and GP cells were characterised electrophysiologically by the presence or absence of a voltage sag in response to hyperpolarising current steps indicative of Ih and the presence of rebound depolarisations. The presence of evoked and spontaneous post-synaptic GABA and glutamatergic currents indicated functional connectivity between the STN and GP. In control slices, STN cells fired action potentials at a regular rate, activity which was unaffected by bath application of the GABAA receptor antagonist picrotoxin (50 μM) or the glutamate receptor antagonist CNQX (10 μM). Paired extracellular recordings of STN cells showed uncorrelated firing. Oscillatory burst activity was induced pharmacologically using the glutamate receptor agonist, NMDA (20 μM), in combination with the potassium channel blocker apamin (50 -100 nM). The burst activity was unaffected by bath application of picrotoxin or CNQX while paired STN recordings showed uncorrelated activity indicating that the activity is not produced by the neuronal network. Thus, no regenerative activity is evident in this mouse brain preparation, either in control slices or when bursting is pharmacologically induced, suggesting the requirement of other afferent inputs that are not present in the slice. Using single-unit extracellular recording, dopamine (30 μM) produced an excitation of STN cells. This excitation was independent of synaptic transmission and was mimicked by both the Dl-like receptor agonist SKF38393 (10 μM) and the D2-like receptor agonist quinpirole (10 μM). However, the excitation was partially reduced by the D1-like antagonist SCH23390 (2 μM) but not by the D2-like antagonists sulpiride (10 μM) and eticlopride (10 μM). Using whole-recordings, dopamine was shown to induce membrane depolarisation. This depolarisation was caused either by a D1-like receptor mediated increase in a conductance which reversed at -34 mV, consistent with a non-specific cation conductance, or a D2-like receptor mediated decrease in conductance which reversed around -100 mV, consistent with a potassium conductance. Bath application of dopamine altered the pattern of the burst-firing produced by NMDA an apamin towards a more regular pattern. This effect was associated with a decrease in amplitude and ll1crease in frequency of TTX-resistant plateau potentials which underlie the burst activity.
Resumo:
Human arythrocytes were used as a model system for an investigation of the mechanism of action of the antiproliferative drug Adriamycin. Erythrocytes were induced to undergo a change in morphology by elevation of intracellular calcium. It was revealed that the widely used media employed for the study of morphological change were unsuitable; a new incubation medium was developed so that cells were metabolically replete. In this medium echinocytosis took place both in a calcium concentration- and time-dependent manner. Pretreatment of erythrocytes with Adriamycin (10 M for 10 mins) protected the erythrocytes against calcium-induced echinocytosis at calcium concentrations < 150M. SDS-PAGE analysis of the cytoskeletal proteins prepared from erythrocytes revealed the calcium-induced proteolysis of two main cytoskeletal proteins: band 2:1 and band 4:1. Only the rate of the proteolysis of band 2.1 correlated with the onset of echinocytosis. Adriamycin inhibited the breakdown of band 2.1 even when the cells formed echinocytes; this raises doubts concerning the importance of band 2.1 in the maintenance of discocyte morphology. Adriamycin only marginally inhibited the purified calcium-activated thio protease (calpain). Calcium-loading of human erythrocytes increased the phosphorylation of several major cytoskeletal proteins including pp120, band 3, band 4.1 and band 4.9. The pattern of increase resembled that induced by 12-0-tetradecanoyl-phorbol-13-acetate. Pre-treatment with Adriamycin prior to calcium loading caused a general lowering of basal phosphorylation. Adriamycin had no effect on the activity of the calcium-activated phospholipid-dependent protein kinase (protein kinase C). A hypothesis is put forward that the morphological transition of erythrocytes might be dependent upon the activity of a contractile system.
Resumo:
IMPORTANCE Genome-wide association studies (GWASs) indicate that single-nucleotide polymorphisms in the CACNA1C and ANK3 genes increase the risk for bipolar disorder (BD). The genes influence neuronal firing by modulating calcium and sodium channel functions, respectively. Both genes modulate ?-aminobutyric acid-transmitting interneuron function and can thus affect brain regional activation and interregional connectivity. OBJECTIVE To determine whether the genetic risk for BD associated with 2 GWAS-supported risk single-nucleotide polymorphisms at CACNA1C rs1006737 and ANK3 rs10994336 is mediated through changes in regional activation and interregional connectivity of the facial affect-processing network. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional functional magnetic resonance imaging study at a research institute of 41 euthymic patients with BD and 46 healthy participants, all of British white descent. MAIN OUTCOMES AND MEASURES Blood oxygen level-dependent signal and effective connectivity measures during the facial affect-processing task. RESULTS In healthy carriers, both genetic risk variants were independently associated with increased regional engagement throughout the facial affect-processing network and increased effective connectivity between the visual and ventral prefrontal cortical regions. In contrast, BD carriers of either genetic risk variant exhibited pronounced reduction in ventral prefrontal cortical activation and visual-prefrontal effective connectivity. CONCLUSIONS AND RELEVANCE Our data demonstrate that the effect of CACNA1C rs1006737 and ANK3 rs10994336 (or genetic variants in linkage disequilibrium) on the brain converges on the neural circuitry involved in affect processing and provides a mechanism linking BD to genome-wide genetic risk variants.
Resumo:
Epidemiological studies previously identified cis-5,8,11,14,17-eicosapentaenoic acid (EPA) as the biologically active component of fish oil of benefit to the cardiovascular system. Although clinical investigations demonstrated its usefulness in surgical procedures, its mechanism of action still remained unclear. It was shown in this thesis, that EPA partially blocked the contraction of aortic smooth muscle cells to the vasoactive agents KCl and noradrenaline. The latter effect was likely caused by reducing calcium influx through receptor-operated channels, supporting a recent suggestion by Asano et al (1997). Consistently, EPA decreased noradrenaline-induced contractures in aortic tissue, in support of previous reports (Engler, 1992b). The observed effect of EPA on cell contractions to KCl was not simple due to blocking calcium influx through L-type channels, consistent with a previous suggestion by Hallaq et al (1992). Moreover, EPA caused a transient increase in [Ca2+]i in the absence of extracellular calcium. To resolve this it was shown that EPA increased inositol phosphate formation which, it is suggested, caused the release of calcium from an inositol phosphate-dependent internal binding site, possibly that of an intracellular membrane or superficial sarcoplasmic reticulum, producing the transient increase in [Ca2+]i. As it was shown that the cellular contractile filaments were not desensitised to calcium by EPA, it is suggested that the transient increase in [Ca2+]i subsequently blocks further cell contraction to KCl by activating membrane-associated potassium channels. Activation of potassium channels induces the cellular efflux of potassium ions, thereby hyperpolarising the plasma membrane and moving the membrane potential farther from the activation range for calcium channels. This would prevent calcium influx in the longer term and could explain the initial observed effect of EPA to block cell contraction to KCl.
Resumo:
The control of cellular water flow is mediated by the aquaporin (AQP) family of membrane proteins. The family's structural features and the mechanism of selective water passage through the AQP pore are established, but there remains a gap in our knowledge of how water transport is regulated. Two broad possibilities exist. One is controlling the passage of water through the AQP pore, but this has only been observed as a phenomenon in some plant and microbial AQPs. An alternative is controlling the number of AQPs in the cell membrane. Here we describe a novel pathway in mammalian cells whereby a hypotonic stimulus directly induces intracellular calcium elevations, through transient receptor potential channels, that trigger AQP1 translocation. This translocation, which has a direct role in cell volume regulation, occurs within 30s and is dependent on calmodulin activation and phosphorylation of AQP1 at two threonine residues by protein kinase C. This direct mechanism provides a rationale for the changes in water transport that are required in response to constantly-changing local cellular water availability. Moreover, since calcium is a pluripotent and ubiquitous second messenger in biological systems, the discovery of its role in the regulation of AQP translocation has ramifications for diverse physiological and pathophysiological processes, as well as providing an explanation for the rapid regulation of water flow that is necessary for cell homeostasis.
Resumo:
The diagnosis of ocular disease is increasingly important in optometric practice and there is a need for cost effective point of care assays to assist in that. Although tears are a potentially valuable source of diagnostic information difficulties associated with sample collection and limited sample size together with sample storage and transport have proved major limitations. Progressive developments in electronics and fibre optics together with innovation in sensing technology mean that the construction of inexpensive point of care fibre optic sensing devices is now possible. Tear electrolytes are an obvious family of target analytes, not least to complement the availability of devices that make the routine measurement of tear osmolarity possible in the clinic. In this paper we describe the design, fabrication and calibration of a fibre-optic based electrolyte sensor for the quantification of potassium in tears using the ex vivo contact lens as the sample source. The technology is generic and the same principles can be used in the development of calcium and magnesium sensors. An important objective of this sensor technology development is to provide information at the point of routine optometric examination, which would provide supportive evidence of tear abnormality.
Resumo:
The aquaporin family of integral membrane proteins is comprised of channels that mediate cellular water flow. Aquaporin 4 (AQP4) is highly expressed in the glial cells of the central nervous system and facilitates the osmotically-driven pathological brain swelling associated with stroke and traumatic brain injury. Here we show that AQP4 cell surface expression can be rapidly and reversibly regulated in response to changes of tonicity in primary cortical rat astrocytes and in transfected HEK293 cells. The translocation mechanism involves protein kinase A (PKA) activation, influx of extracellular calcium and activation of calmodulin. We identify five putative PKA phosphorylation sites and use site-directed mutagenesis to show that only phosphorylation at one of these sites, serine- 276, is necessary for the translocation response. We discuss our findings in the context of the identification of new therapeutic approaches to treating brain oedema.
Resumo:
Approach and Results - Using in vitro and in vivo assays, we here demonstrate that the interaction between PMCA4 and calcineurin in VEGF-stimulated endothelial cells leads to downregulation of the calcineurin/NFAT pathway and to a significant reduction in the subsequent expression of the NFAT-dependent, VEGF-activated, proangiogenic genes RCAN1.4 and Cox-2. PMCA4-dependent inhibition of calcineurin signaling translates into a reduction in endothelial cell motility and blood vessel formation that ultimately impairs in vivo angiogenesis by VEGF. Objective - Vascular endothelial growth factor (VEGF) has been identified as a crucial regulator of physiological and pathological angiogenesis. Among the intracellular signaling pathways triggered by VEGF, activation of the calcineurin/ nuclear factor of activated T cells (NFAT) signaling axis has emerged as a critical mediator of angiogenic processes. We and others previously reported a novel role for the plasma membrane calcium ATPase (PMCA) as an endogenous inhibitor of the calcineurin/NFAT pathway, via interaction with calcineurin, in cardiomyocytes and breast cancer cells. However, the functional significance of the PMCA/calcineurin interaction in endothelial pathophysiology has not been addressed thus far. Conclusions - Given the importance of the calcineurin/NFAT pathway in the regulation of pathological angiogenesis, targeted modulation of PMCA4 functionality might open novel therapeutic avenues to promote or attenuate new vessel formation in diseases that occur with angiogenesis.
Resumo:
Current anti-angiogenic treatments involve the attenuation of signalling via the pro-angiogenic vascular endothelial growth factor/receptor (VEGF/VEGFR) axis. Stimulation of angiogenesis by VEGF requires the activation of the calcineurin/nuclear factor of activated T-cells (NFAT) signal transduction pathway which is inhibited by Plasma Membrane Calcium ATPase 4 (PMCA4), an endogenous calcium extrusion pump. However, PMCA4s role in calcineurin/NFAT-dependent angiogenesis is unknown. Using “gain of function” studies, we show here that adenoviral overexpression of PMCA4 in human umbilical vein endothelial cells (HUVEC) inhibited NFAT activity, decreased the expression of NFAT-dependent pro-angiogenic proteins (regulator of calcineurin 1.4 (RCAN1.4) and cyclooxygenase-2) and diminished in vitro cell migration and tube formation in response to VEGF-stimulation. Furthermore, in vivo blood vessel formation was attenuated in a matrigel plug assay by ectopic expression of PMCA4. Conversely, “loss of function” experiments by si-RNA-mediated knockdown of PMCA4 in HUVEC or isolation of mouse lung endothelial cells from PMCA4−/− mice showed increased VEGF-induced NFAT activity, RCAN1.4 expression, in vitro endothelial cell migration, tube formation and in vivo blood vessel formation. Additionally, in an in vivo pathological angiogenesis model of limb ischemia, the reperfusion of the ischemic limb of PMCA4−/− mice was augmented compared to wild-type. Disruption of the interaction between endogenous PMCA4 and calcineurin by adenoviral overexpression of the region of PMCA4 that interacts with calcineurin (residues 428–651) increased NFAT activity, RCAN1.4 protein expression and in vitro tube formation. These results identify PMCA4 as an inhibitor of VEGF-induced angiogenesis, highlighting its potential as a new therapeutic target for anti-angiogenic treatments.