6 resultados para butterflies in the stomach
em Aston University Research Archive
Resumo:
Nitric oxide is a free-radical gas which can exert both protective and damaging effects. The objectives of the thesis were: (i) to investigate arginine metabolism in isolated rat gastric mucosal cells, (ii) to investigate the role of NO in the induction of ornithine decarboxylase in the rat gastric mucosa damaged by hypertonic saline in vivo, (iii) to expose primary cultures of guinea-pig gastric mucosal cells to oxidative challenge and an NO donor, and to investigate the response in terms of heat shock protein 72 (HSP 72) induction, and (iv) to investigate the induction of iNOS and the role of potential modulators of activity in gastric cell lines. Isolated rat gastric mucosal cells converted exogenous arginine to ornithine and citrulline. This metabolism of arginine was not affected by a range of NO synthase inhibitors, but was reduced by the arginase inhibitors NG-hydroxy-L-arginine and L-ornithine. Thus, the predominant pathway of arginine metabolism involves arginase and ornithine transcarbamoylase, not NO synthase. Pretreatment of rats with NG-nitro-L-arginine promoted activation of ornithine decarboxylase after intragastric hypertonic saline, but did not increase acid phosphatase release (damage). NO may therefore restrict activation of ornithine decarboxylase in response to damage. Exposure of primary cultures of guinea-pig gastric mucosal cells to S-nitroso-N-acetyl-penicillamine (SNAP) caused a concentration dependent induction of HSP 72, which was inhibited by an NO scavenger and blockade of transcription. The effect of SNAP was enhanced by decreasing the intracellular reduced thiol content with diethyl maleate, which itself also induced HSP 72 formation. Substantial amounts of NO may induce defensive responses in cells. Induction of iNOS was not detected in HGT-1 or AGS cells exposed to cytokines. Conclusions An arginase pathway may restrict availability of arginine for NO synthase in gastric mucosa or may be present to supply ornithine for polyamine synthesis. NO may modulate the response to damage of the stomach epithelium in vivo. Exogenous NO may induce a defensive response in gastric mucosal cells.
Resumo:
In vitro studies of drug absorption processes are undertaken to assess drug candidate or formulation suitability, mechanism investigation, and ultimately for the development of predictive models. This study included each of these approaches, with the aim of developing novel in vitro methods for inclusion in a drug absorption model. Two model analgesic drugs, ibuprofen and paracetamol, were selected. The study focused on three main areas, the interaction of the model drugs with co-administered antacids, the elucidation of the mechanisms responsible for the increased absorption rate observed in a novel paracetamol formulation and the development of novel ibuprofen tablet formulations containing alkalising excipients as dissolution promoters.Several novel dissolution methods were developed. A method to study the interaction of drug/excipient mixtures in the powder form was successfully used to select suitable dissolution enhancing exicipents. A method to study intrinsic dissolution rate using paddle apparatus was developed and used to study dissolution mechanisms. Methods to simulate stomach and intestine environments in terms of media composition and volume and drug/antacid doses were developed. Antacid addition greatly increased the dissolution of ibuprofen in the stomach model.Novel methods to measure drug permeability through rat stomach and intestine were developed, using sac methodology. The methods allowed direct comparison of the apparent permeability values obtained. Tissue stability, reproducibility and integrity was observed, with selectivity between paracellular and transcellular markers and hydrophilic and lipophilic compounds within an homologous series of beta-blockers.
Resumo:
This study was undertaken to increase knowledge of the mechanisms of inter- and intracellular signalling in the gastrointestinal tract. Specific aims were: to use cell lines to elucidate factors affecting growth of gastric cells, to investigate the distribution and aspects of function of isoforms of protein kinase C in a gastric cell line and in the rat gastrointestinal tract and to determine the presence and regulation of nitric oxide synthase in gastrointestinal tissues from the rat and in cell lines. The gastric cancer cell line HGT-1 was used to investigate control of growth. Increases in cell number were found to be dependent on the seeding density of the cells. In cells plated at low density insulin, epidermal growth factor and gastrin all increased cell number. Gastrin produced a bell-shaped dose response curve with a maximum activity at 5nM. No effect of gastrin was apparent in cells plated at high density. α and β isoforms of protein kinase C were found, by immunoblotting procedures, to be widespread in the gastrointestinal tract of the rat, but protein kinase Cε was confined to the gastric mucosa and gastrointestinal smooth muscle. HGT-1 cells contained protein kinase C α and ε but β or γ were not detected. Preincubation of HGT-1 cells for 24h with 1μM phorbol-12,13-dibutyrate down-regulated protein kinase C α but not ε. The inhibition by the activator of protein kinase C, 12-O-tetradecanoylphorbol 13-acetate (TPA) of the histamine-stimulated increase in cAMP in HGT-1 cells was down regulated by phorbol-12,13-dibutyrate. Inhibition of histamine-stimulation of adenylate cyclase by TPA was Ca2+-dependent and inhibited by the addition of an antibody to protein kinase C α. A role for protein kinase C α in modulating the effect of histamine on adenylate cyclase in HGT-1 cells is suggested. No nitric oxide synthase activity was detected in the gastrointestinal cell lines HGT-l, MKN-45 or CaCo-2. Ca2+-dependent nitric oxide synthase activity was observed in the gastric mucosa and the gastrointestinal smooth muscle from stomach to colon. The gastric: mucosal enzyme was soluble and showed half-maximal activity at 400nM Ca2+. Pretreatment of rats with endotoxin (3mg/kg body weight) induced nitric oxide synthase activity in both jejunal, ileal and colonic mucosa and muscle. A major portion of the induced activity in ileal and colonic mucosa was Ca2+-independent. Nitric oxide synthase activity in a high-density fraction of gastric mucosal cells was inhibited in a dose-dependent fashion by L-nitroarginine, NG-monomethyl-L-arginine, trifluoperazine and L-canavanine (in descending order of potency). Preincubation with okadaic acid and addition of ATPlMg2+ to the homogenisation buffer inhibited enzyme activity, which implies that phosphorylation inhibits gastric mucosal nitric oxide synthase.
Resumo:
The surface epithelial cells of the stomach represent a major component of the gastric barrier. A cell culture model of the gastric epithelial cell surface would prove useful for biopharmaceutical screening of new chemical entities and dosage forms. Primary cultures of guinea pig gastric mucous epithelial cells were grown on filter inserts (Transwells®) for 3 days. Tight-junction formation, assessed by transepithelial electrical resistance (TEER) and permeability of mannitol and fluorescein, was enhanced when collagen IV rather than collagen I was used to coat the polycarbonate filter. TEER for cells grown on collagen IV was close to that obtained with intact guinea pig gastric epithelium in vitro. Differentiation was assessed by incorporation of [ 3H]glucosamine into glycoprotein and by activity of NADPH oxidase, which produces superoxide. Both of these measures were greater for cells grown on filters coated with collagen I than for cells grown on plastic culture plates, but no major difference was found between cells grown on collagens I and IV. The proportion of cells, which stained positively for mucin with periodic acid Schiff reagent, was greater than 95% for all culture conditions. Monolayers grown on membranes coated with collagen IV exhibited apically polarized secretion of mucin and superoxide, and were resistant to acidification of the apical medium to pH 3.0 for 30 min. A screen of nonsteroidal anti-inflammatory drugs revealed a novel effect of diclofenac and niflumic acid in reversibly reducing permeability by the paracellular route. In conclusion, the mucous cell preparation grown on collagen IV represents a good model of the gastric surface epithelium suitable for screening procedures. © 2005 The Society for Biomolecular Screening.