11 resultados para bootstrapping
em Aston University Research Archive
Resumo:
Performance analysis has become a vital part of the management practices in the banking industry. There are numerous applications using DEA models to estimate efficiency in banking, and most of them assume that inputs and outputs are known with absolute precision. Here, we propose new Fuzzy-DEA α-level models to assess underlying uncertainty. Further, bootstrap truncated regressions with fixed factors are used to measure the impact of each model on the efficiency scores and to identify the most relevant contextual variables on efficiency. The proposed models have been demonstrated using an application in Mozambican banks to handle the underlying uncertainty. Findings reveal that fuzziness is predominant over randomness in interpreting the results. In addition, fuzziness can be used by decision-makers to identify missing variables to help in interpreting the results. Price of labor, price of capital, and market-share were found to be the significant factors in measuring bank efficiency. Managerial implications are addressed.
Resumo:
This doctoral thesis responds to the need for greater understanding of small businesses and their inherent unique problem-types. Integral to the investigation is the theme that for governments to effectively influence small business, a sound understanding of the factors they are seeking to influence is essential. Moreover, the study, in its recognition of the many shortcomings in management research and, in particular that the research methods and approaches adopted often fail to give adequate understanding of issues under study, attempts to develop an innovative and creative research approach. The aim thus being to produce, not only advances in small business management knowledge from the standpoints of government policy makers and `lq recipient small business, but also insights into future potential research method for the continued development of that knowledge. The origins of the methodology lay in the non-acceptance of traditional philosophical positions in epistemology and ontology, with a philosophical standpoint of internal realism underpinning the research. Internal realism presents the basis for the potential co-existence of qualitative and quantitative research strategy and underlines the crucial contributory role of research method in provision of ultimate factual status of the assertions of research findings. The concept of epistemological bootstrapping is thus used to develop a `lq partial research framework to foothold case study research, thereby avoiding limitations of objectivism and brute inductivism. The major insights and issues highlighted by the `lq bootstrap, guide the researcher around the participant case studies. A novel attempt at contextualist (linked multi-level and processual) analysis was attempted in the major in-depth case study, with two further cases playing a support role and contributing to a balanced emphasis of empirical research within the context of time constraints inherent within part-time research.
Resumo:
This empirical study employs a different methodology to examine the change in wealth associated with mergers and acquisitions (M&As) for US firms. Specifically, we employ the standard CAPM, the Fama-French three-factor model and the Carhart four-factor models within the OLS and GJR-GARCH estimation methods to test the behaviour of the cumulative abnormal returns (CARs). Whilst the standard CAPM captures the variability of stock returns with the overall market, the Fama-French factors capture the risk factors that are important to investors. Additionally, augmenting the Fama-French three-factor model with the Carhart momentum factor to generate the four-factor captures additional pricing elements that may affect stock returns. Traditionally, estimates of abnormal returns (ARs) in M&As situations rely on the standard OLS estimation method. However, the standard OLS will provide inefficient estimates of the ARs if the data contain ARCH and asymmetric effects. To minimise this problem of estimation efficiency we re-estimated the ARs using GJR-GARCH estimation method. We find that there is variation in the results both as regards the choice models and estimation methods. Besides these variations in the estimated models and the choice of estimation methods, we also tested whether the ARs are affected by the degree of liquidity of the stocks and the size of the firm. We document significant positive post-announcement cumulative ARs (CARs) for target firm shareholders under both the OLS and GJR-GARCH methods across all three methodologies. However, post-event CARs for acquiring firm shareholders were insignificant for both sets of estimation methods under the three methodologies. The GJR-GARCH method seems to generate larger CARs than those of the OLS method. Using both market capitalization and trading volume as a measure of liquidity and the size of the firm, we observed strong return continuations in the medium firms relative to small and large firms for target shareholders. We consistently observed market efficiency in small and large firm. This implies that target firms for small and large firms overreact to new information resulting in a more efficient market. For acquirer firms, our measure of liquidity captures strong return continuations for small firms under the OLS estimates for both CAPM and Fama-French three-factor models, whilst under the GJR-GARCH estimates only for Carhart model. Post-announcement bootstrapping simulated CARs confirmed our earlier results.
Resumo:
Purpose: Our study explores the mediating role of discrete emotions in the relationships between employee perceptions of distributive and procedural injustice, regarding an annual salary raise, and counterproductive work behaviors (CWBs). Design/Methodology/Approach: Survey data were provided by 508 individuals from telecom and IT companies in Pakistan. Confirmatory factor analysis, structural equation modeling, and bootstrapping were used to test our hypothesized model. Findings: We found a good fit between the data and our tested model. As predicted, anger (and not sadness) was positively related to aggressive CWBs (abuse against others and production deviance) and fully mediated the relationship between perceived distributive injustice and these CWBs. Against predictions, however, neither sadness nor anger was significantly related to employee withdrawal. Implications: Our findings provide organizations with an insight into the emotional consequences of unfair HR policies, and the potential implications for CWBs. Such knowledge may help employers to develop training and counseling interventions that support the effective management of emotions at work. Our findings are particularly salient for national and multinational organizations in Pakistan. Originality/Value: This is one of the first studies to provide empirical support for the relationships between in/justice, discrete emotions and CWBs in a non-Western (Pakistani) context. Our study also provides new evidence for the differential effects of outward/inward emotions on aggressive/passive CWBs. © 2012 Springer Science+Business Media, LLC.
Resumo:
The purpose of this study is to investigate the impact of human resource (HR) practices on organizational performance through the mediating role of psychological contract (expressed by the influence of employer on employee promises fulfillment through employee attitudes). The study is based on a national sample of 78 organizations from the public and private services sector in Greece, including education, health, and banking, and on data obtained from 348 employees. The statistical method employed is structural equation modeling, via LISREL and bootstrapping estimation. The findings of the study suggest that employee incentives, performance appraisal, and employee promotion are three major HR practices that must be extensively employed. Furthermore, the study suggests that the organization must primarily keep its promises about a pleasant and safe working environment, respectful treatment, and feedback for performance, in order for employees to largely keep their own promises about showing loyalty to the organization, maintaining high levels of attendance, and upholding company reputation. Additionally, the study argues that the employee attitudes of motivation, satisfaction, and commitment constitute the nested epicenter mediating construct in both the HR practices–performance and employer–employee promise fulfillment relationships, resulting in superior organizational performance. © 2012 Wiley Periodicals, Inc.
Resumo:
This paper proposes a new framework for evaluating the performance of employment offices based on non-parametric technique of data envelopment analysis. This framework is explained using the assessment of technical efficiency of 82 employment offices in Tunisia which are under the direction of the National Agency for Employment and Independent Work. We further investigated the exogenous factors that may explain part of the variation in efficiency scores using a bootstrapping approach in period January 2006 to December 2008. Given the specialisation of employment offices, we used the proposed approach for the efficiency evaluation of graduate employment offices and multi-services employment offices, separately.
Resumo:
Guest editorial Ali Emrouznejad is a Senior Lecturer at the Aston Business School in Birmingham, UK. His areas of research interest include performance measurement and management, efficiency and productivity analysis as well as data mining. He has published widely in various international journals. He is an Associate Editor of IMA Journal of Management Mathematics and Guest Editor to several special issues of journals including Journal of Operational Research Society, Annals of Operations Research, Journal of Medical Systems, and International Journal of Energy Management Sector. He is in the editorial board of several international journals and co-founder of Performance Improvement Management Software. William Ho is a Senior Lecturer at the Aston University Business School. Before joining Aston in 2005, he had worked as a Research Associate in the Department of Industrial and Systems Engineering at the Hong Kong Polytechnic University. His research interests include supply chain management, production and operations management, and operations research. He has published extensively in various international journals like Computers & Operations Research, Engineering Applications of Artificial Intelligence, European Journal of Operational Research, Expert Systems with Applications, International Journal of Production Economics, International Journal of Production Research, Supply Chain Management: An International Journal, and so on. His first authored book was published in 2006. He is an Editorial Board member of the International Journal of Advanced Manufacturing Technology and an Associate Editor of the OR Insight Journal. Currently, he is a Scholar of the Advanced Institute of Management Research. Uses of frontier efficiency methodologies and multi-criteria decision making for performance measurement in the energy sector This special issue aims to focus on holistic, applied research on performance measurement in energy sector management and for publication of relevant applied research to bridge the gap between industry and academia. After a rigorous refereeing process, seven papers were included in this special issue. The volume opens with five data envelopment analysis (DEA)-based papers. Wu et al. apply the DEA-based Malmquist index to evaluate the changes in relative efficiency and the total factor productivity of coal-fired electricity generation of 30 Chinese administrative regions from 1999 to 2007. Factors considered in the model include fuel consumption, labor, capital, sulphur dioxide emissions, and electricity generated. The authors reveal that the east provinces were relatively and technically more efficient, whereas the west provinces had the highest growth rate in the period studied. Ioannis E. Tsolas applies the DEA approach to assess the performance of Greek fossil fuel-fired power stations taking undesirable outputs into consideration, such as carbon dioxide and sulphur dioxide emissions. In addition, the bootstrapping approach is deployed to address the uncertainty surrounding DEA point estimates, and provide bias-corrected estimations and confidence intervals for the point estimates. The author revealed from the sample that the non-lignite-fired stations are on an average more efficient than the lignite-fired stations. Maethee Mekaroonreung and Andrew L. Johnson compare the relative performance of three DEA-based measures, which estimate production frontiers and evaluate the relative efficiency of 113 US petroleum refineries while considering undesirable outputs. Three inputs (capital, energy consumption, and crude oil consumption), two desirable outputs (gasoline and distillate generation), and an undesirable output (toxic release) are considered in the DEA models. The authors discover that refineries in the Rocky Mountain region performed the best, and about 60 percent of oil refineries in the sample could improve their efficiencies further. H. Omrani, A. Azadeh, S. F. Ghaderi, and S. Abdollahzadeh presented an integrated approach, combining DEA, corrected ordinary least squares (COLS), and principal component analysis (PCA) methods, to calculate the relative efficiency scores of 26 Iranian electricity distribution units from 2003 to 2006. Specifically, both DEA and COLS are used to check three internal consistency conditions, whereas PCA is used to verify and validate the final ranking results of either DEA (consistency) or DEA-COLS (non-consistency). Three inputs (network length, transformer capacity, and number of employees) and two outputs (number of customers and total electricity sales) are considered in the model. Virendra Ajodhia applied three DEA-based models to evaluate the relative performance of 20 electricity distribution firms from the UK and the Netherlands. The first model is a traditional DEA model for analyzing cost-only efficiency. The second model includes (inverse) quality by modelling total customer minutes lost as an input data. The third model is based on the idea of using total social costs, including the firm’s private costs and the interruption costs incurred by consumers, as an input. Both energy-delivered and number of consumers are treated as the outputs in the models. After five DEA papers, Stelios Grafakos, Alexandros Flamos, Vlasis Oikonomou, and D. Zevgolis presented a multiple criteria analysis weighting approach to evaluate the energy and climate policy. The proposed approach is akin to the analytic hierarchy process, which consists of pairwise comparisons, consistency verification, and criteria prioritization. In the approach, stakeholders and experts in the energy policy field are incorporated in the evaluation process by providing an interactive mean with verbal, numerical, and visual representation of their preferences. A total of 14 evaluation criteria were considered and classified into four objectives, such as climate change mitigation, energy effectiveness, socioeconomic, and competitiveness and technology. Finally, Borge Hess applied the stochastic frontier analysis approach to analyze the impact of various business strategies, including acquisition, holding structures, and joint ventures, on a firm’s efficiency within a sample of 47 natural gas transmission pipelines in the USA from 1996 to 2005. The author finds that there were no significant changes in the firm’s efficiency by an acquisition, and there is a weak evidence for efficiency improvements caused by the new shareholder. Besides, the author discovers that parent companies appear not to influence a subsidiary’s efficiency positively. In addition, the analysis shows a negative impact of a joint venture on technical efficiency of the pipeline company. To conclude, we are grateful to all the authors for their contribution, and all the reviewers for their constructive comments, which made this special issue possible. We hope that this issue would contribute significantly to performance improvement of the energy sector.
Resumo:
Estimation of economic relationships often requires imposition of constraints such as positivity or monotonicity on each observation. Methods to impose such constraints, however, vary depending upon the estimation technique employed. We describe a general methodology to impose (observation-specific) constraints for the class of linear regression estimators using a method known as constraint weighted bootstrapping. While this method has received attention in the nonparametric regression literature, we show how it can be applied for both parametric and nonparametric estimators. A benefit of this method is that imposing numerous constraints simultaneously can be performed seamlessly. We apply this method to Norwegian dairy farm data to estimate both unconstrained and constrained parametric and nonparametric models.
Resumo:
This paper proposes a constrained nonparametric method of estimating an input distance function. A regression function is estimated via kernel methods without functional form assumptions. To guarantee that the estimated input distance function satisfies its properties, monotonicity constraints are imposed on the regression surface via the constraint weighted bootstrapping method borrowed from statistics literature. The first, second, and cross partial analytical derivatives of the estimated input distance function are derived, and thus the elasticities measuring input substitutability can be computed from them. The method is then applied to a cross-section of 3,249 Norwegian timber producers.
Resumo:
We present in this article an automated framework that extracts product adopter information from online reviews and incorporates the extracted information into feature-based matrix factorization formore effective product recommendation. In specific, we propose a bootstrapping approach for the extraction of product adopters from review text and categorize them into a number of different demographic categories. The aggregated demographic information of many product adopters can be used to characterize both products and users in the form of distributions over different demographic categories. We further propose a graphbased method to iteratively update user- and product-related distributions more reliably in a heterogeneous user-product graph and incorporate them as features into the matrix factorization approach for product recommendation. Our experimental results on a large dataset crawled from JINGDONG, the largest B2C e-commerce website in China, show that our proposed framework outperforms a number of competitive baselines for product recommendation.
Resumo:
Social exchange theory and notions of reciprocity have long been assumed to explain the relationship between psychological contract breach and important employee outcomes. To date, however, there has been no explicit testing of these assumptions. This research, therefore, explores the mediating role of negative, generalized, and balanced reciprocity, in the relationships between psychological contract breach and employees’ affective organizational commitment and turnover intentions. A survey of 247 Pakistani employees of a large public university was analyzed using structural equation modeling and bootstrapping techniques, and provided excellent support for our model. As predicted, psychological contract breach was positively related to negative reciprocity norms and negatively related to generalized and balanced reciprocity norms. Negative and generalized (but not balanced) reciprocity were negatively and positively (respectively) related to employees’ affective organizational commitment and fully mediated the relationship between psychological contract breach and affective organizational commitment. Moreover, affective organizational commitment fully mediated the relationship between generalized and negative reciprocity and employees’ turnover intentions. Implications for theory and practice are discussed.