9 resultados para boost inverter
em Aston University Research Archive
Resumo:
To fully utilize second-life batteries on the grid system, a hybrid battery scheme needs to be considered for several reasons: the uncertainty over using a single source supply chain for second-life batteries, the differences in evolving battery chemistry and battery configuration by different suppliers to strive for greater power levels, and the uncertainty of degradation within a second-life battery. Therefore, these hybrid battery systems could have widely different module voltage, capacity, and initial state of charge and state of health. In order to suitably integrate and control these widely different batteries, a suitable multimodular converter topology and an associated control structure are required. This paper addresses these issues proposing a modular boost-multilevel buck converter based topology to integrate these hybrid second-life batteries to a grid-tie inverter. Thereafter, a suitable module-based distributed control architecture is introduced to independently utilize each converter module according to its characteristics. The proposed converter and control architecture are found to be flexible enough to integrate widely different batteries to an inverter dc link. Modeling, analysis, and experimental validation are performed on a single-phase modular hybrid battery energy storage system prototype to understand the operation of the control strategy with different hybrid battery configurations.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Orimulsion400 is a new generation of the Orimulsion formula. This new generation is a more environmentally friendly, cost-effective energy source. This article describes the product's evolution as well as test results from diverse power plants.
Resumo:
Astrocytes modulate synaptic strength. This effect occurs, reports a new paper, because ATP-dependent vesicular release of astrocytic glutamate acts on presynaptic neuronal NMDA receptors to increase synaptic efficacy. © 2007 Nature Publishing Group.
Resumo:
Purpose: Several studies have documented that people's ability to correctly report details of witnessed events is enhanced when they merely close their eyes. Yet closing one's eyes in front of a stranger could sometimes create social discomfort, which other studies suggest can impair memory reports. This paper reports two experiments exploring the extent to which the memory benefits of eyeclosure are enhanced when efforts are taken to build interviewer/witness rapport, thus potentially reducing discomfort. Methods: In both studies participants observed filmed events and, afterwards, half underwent a basic rapport-building exercise with an interviewer. All participants then answered closed questions about specific details of the event, and half were instructed to close their eyes throughout this questioning. We recorded the proportion of questions answered correctly, incorrectly, or with 'don't know' responses. Results: Both eyeclosure and rapport-building separately enhanced correct responding. The data offer no evidence, though, that rapport-building moderated this eyeclosure benefit. This is despite the fact that rapport-building did appear to moderate the effect of eyeclosure on participants' self-reported comfort during the interviews. Conclusions: These studies give us initial cause for doubt over a hypothesized - but heretofore untested - social psychological constraint on the benefits of eyeclosure.
Resumo:
A hybrid passive-active damping solution with improved system stability margin and enhanced dynamic performance is proposed for high power grid interactive converters. In grid connected active rectifier/inverter application, line side LCL filter improves the high frequency attenuation and makes the converter compatible with the stringent grid power quality regulations. Passive damping though offers a simple and reliable solution but it reduces overall converter efficiency. Active damping solutions do not increase the system losses but can guarantee the stable operation up to a certain speed of dynamic response which is limited by the maximum bandwidth of the current controller. This paper examines this limit and introduces a concept of hybrid passive-active damping solution with improved stability margin and high dynamic performance for line side LCL filter based active rectifier/inverter applications. A detailed design, analysis of the hybrid approach and trade-off between system losses and dynamic performance in grid connected applications are reported. Simulation and experimental results from a 10 kVA prototype demonstrate the effectiveness of the proposed solution. An analytical study on system stability and dynamic response with the variations of various controller and passive filter parameters is presented.
Resumo:
The use of ex-transportation battery system (i.e. second life EV/HEV batteries) in grid applications is an emerging field of study. A hybrid battery scheme offers a more practical approach in second life battery energy storage systems because battery modules could be from different sources/ vehicle manufacturers depending on the second life supply chain and have different characteristics e.g. voltage levels, maximum capacity and also different levels of degradations. Recent research studies have suggested a dc-side modular multilevel converter topology to integrate these hybrid batteries to a grid-tie inverter. Depending on the battery module characteristics, the dc-side modular converter can adopt different modes such as boost, buck or boost-buck to suitably transfer the power from battery to the grid. These modes have different switching techniques, control range, different efficiencies, which give a system designer choice on operational mode. This paper presents an analysis and comparative study of all the modes of the converter along with their switching performances in detail to understand the relative advantages and disadvantages of each mode to help to select the suitable converter mode. Detailed study of all the converter modes and thorough experimental results based on a multi-modular converter prototype based on hybrid batteries has been presented to validate the analysis.
Resumo:
A cascaded DC-DC boost converter is one of the ways to integrate hybrid battery types within a grid-tie inverter. Due to the presence of different battery parameters within the system such as, state-of-charge and/or capacity, a module based distributed power sharing strategy may be used. To implement this sharing strategy, the desired control reference for each module voltage/current control loop needs to be dynamically varied according to these battery parameters. This can cause stability problem within the cascaded converters due to relative battery parameter variations when using the conventional PI control approach. This paper proposes a new control method based on Lyapunov Functions to eliminate this issue. The proposed solution provides a global asymptotic stability at a module level avoiding any instability issue due to parameter variations. A detailed analysis and design of the nonlinear control structure are presented under the distributed sharing control. At last thorough experimental investigations are shown to prove the effectiveness of the proposed control under grid-tie conditions.
Resumo:
A new topology of the high frequency alternating current (HFAC) inverter bridge arm is proposed which comprises a coupled inductor, a switching device and an active clamp circuit. Based on it, new single-phase and threephase inverters are proposed and their operating states are analysed along with the traditional H-bridge inverter. Multiphase and multi-level isolated inverters are also developed using the HFAC bridge arm. Furthermore, based on the proposed HFAC, a front-end DC-DC converter is also developed for photovoltaic systems to demonstrate the application of the proposed HFAC converter. Simulation and experimental results from prototype converters are carried out to validate the proposed topologies which can be utilised widely in high frequency power conversion applications such as induction heating and wireless power transfer.