8 resultados para bone repair

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tissue transglutaminase (tTG) has recently been established as a novel cell surface adhesion protein that binds with high affinity to fibronectin in the pericellular matrix. In this study, we have made use of this property to enhance the biocompatibility of poly(epsilon-caprolactone) (PCL), a biomaterial currently used in bone repair. Poly(epsilon-caprolactone) discs were first coated with fibronectin and then tTG. The surface localisation of the two proteins was confirmed using ELISA and the tTG shown to be active on the surface by incorporation of biotin cadaverine into the fibronectin coating. When human osteoblasts (HOBs) were seeded onto the coated polymer surfaces in serum free medium, the surface coated with fibronectin and then tTG showed an increase in the spreading of the cells as compared to the surface coated with fibronectin alone, when analysed using environmental scanning electron microscopy. The presence of tTG had no effect on HOB cell differentiation when analysed by determining alkaline phosphatase activity. The use of tTG as a novel adhesion protein in this way may therefore have considerable potential in forming a stable tissue/biomaterial interface for application in medical devices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carbon monoxide (CO) has emerged as a vascular homeostatic molecule that prevents balloon angioplasty-induced stenosis via antiproliferative effects on vascular smooth muscle cells. The effects of CO on reendothelialization have not been evaluated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim. To compare the incorporation, growth, and chondrogenic potential of bone marrow (BM) and adipose tissue (AT) mesenchymal stem cells (MSCs) in scaffolds used for cartilage repair. Methods. Human BM and AT MSCs were isolated, culture expanded, and characterised using standard protocols, then seeded into 2 different scaffolds, Chondro-Gide or Alpha Chondro Shield. Cell adhesion, incorporation, and viable cell growth were assessed microscopically and following calcein AM/ethidium homodimer (Live/Dead) staining. Cell-seeded scaffolds were treated with chondrogenic inducers for 28 days. Extracellular matrix deposition and soluble glycosaminoglycan (GAG) release into the culture medium was measured at day 28 by histology/immunohistochemistry and dimethylmethylene blue assay, respectively. Results. A greater number of viable MSCs from either source adhered and incorporated into Chondro-Gide than into Alpha Chondro Shield. In both cell scaffolds, this incorporation represented less than 2% of the cells that were seeded. There was a marked proliferation of BM MSCs, but not AT MSCs, in Chondro-Gide. MSCs from both sources underwent chondrogenic differentiation following induction. However, cartilaginous extracellular matrix deposition was most marked in Chondro- Gide seeded with BM MSCs. Soluble GAG secretion increased in chondrogenic versus control conditions. There was no marked difference in GAG secretion by MSCs from either cell source. Conclusion. Chondro-Gide and Alpha Chondro Shield were permissive to the incorporation and chondrogenic differentiation of human BM and AT MSCs. Chondro-Gide seeded with BM MSCs demonstrated the greatest increase in MSC number and deposition of a cartilaginous tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transplantation of bone marrow stem cells into spinal cord lesions enhances axonal regeneration and promotes functional recovery in animal studies. There are two types of adult bone marrow stem cell; hematopoietic stem cells (HSCs), and mesenchymal stem cells (MSCs). The mechanisms by which HSCs and MSCs might promote spinal cord repair following transplantation have been extensively investigated. The objective of this review is to discuss these mechanisms; we briefly consider the controversial topic of HSC and MSC transdifferentiation into central nervous system cells but focus on the neurotrophic, tissue sparing, and reparative action of MSC grafts in the context of the spinal cord injury (SCI) milieu. We then discuss some of the specific issues related to the translation of HSC and MSC therapies for patients with SCI and present a comprehensive critique of the current bone marrow cell clinical trials for the treatment of SCI to date.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(e-caprolactone) (PCL) is biocompatible, non-immunogenic and non-toxic, and slowly degrades, allowing sufficient time for tissue regeneration. PCL has the potential for application in bone and cartilage repair as it may provide the essential structure required for bone regeneration, however, an ideal scaffold system is still undeveloped. PCL fibres were prepared using the gravity spinning technique, in which collagen was either incorporated into or coated onto the 'as-spun' fibres, in order to develop novel biodegradable polymer fibres which will effectively deliver collagen and support the attachment and proliferation of human osteoblast (HOB) cells for bone regeneration. The physical and mechanical characteristics and cell fibre interactions were analysed. The PCL fibres were found to be highly flexible and inclusion of collagen did not alter the mechanical properties of PCL fibres. Overall, HOB cells were shown to effectively adhere and proliferate on all fibre platforms tested, although proliferation rates were enhanced by surface coating PCL fibres with collagen compared to PCL fibres incorporating collagen and PCL-only fibres. These findings highlight the potential of using gravity spun PCL fibres as a delivery platform for extracellular matrix proteins, such as collagen, in order to enhance cell adherence and proliferation for tissue repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue Transglutaminase (TG2) and FXIIIa, members of the transglutaminase (TG) family, catalyses a transamidating reaction and form covalent bond between or within proteins. In bone development, both enzymes expressions correlate with the initial of the mineralisation process by osteoblasts and chondrocytes. Exogenous TG2 also promotes maturation of chondrocytes and mineralisation in pre-osteoblasts. To understand the role of endogenous TG2 in osteoblast mineralisation, the TG2 expression was examined during the human osteoblast (HOB) mineralisation. The expression of the endogenous TG2 increased during the mineralisation, yet, its expression was not essential for mineral deposition due to the compensation effect by other members in the TG family. The extracellular transamidating activity of HOBs was found increased during mineralisation and a shift from FXIIIa dominant- to TG2-dominant crosslinking activity was suggested after differentiation. However, the transamidating activity of both TG2 and FXIIIa were not critical for cell mineralisation. On the other hand, Exogenous TG2 was found to enhance wild type HOB and TG2 knockdown HOB mineral deposition. The transamidating activity of TG2 was not required but most likely a close conformation was essential for this enhancement. Results also demonstrated that exogenous TG2 may activate the ß-catenin pathway through LRP5 receptor thus contribute in cell mineralisation. This enhancement could be abolished by addition of ß-catenin inhibitors. Finally, using of TG2 crosslinked collagen gel for bone and cornea repair was evaluated. Crosslinked collagen gel showed promising results in improving HOB mineralisation, human corneal fibroblast (hCF) proliferation and migration. These effects might be resulted from the trapped TG2 within the collagen matrix and the alteration of matrix topography by TG2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteochondral tissue repair requires formation of vascularized bone and avascular cartilage. Mesenchymal stem cells stimulate angiogenesis both in vitro and in vivo but it is not known if these proangiogenic properties change as a result of chondrogenic or osteogenic differentiation. We investigated the angiogenic/antiangiogenic properties of equine bone marrow-derived mesenchymal stem cells (eBMSCs) before and after differentiation in vitro. Conditioned media from chondrogenic and osteogenic cell pellets and undifferentiated cells was applied to endothelial tube formation assays using Matrigel™. Additionally, the cell secretome was analysed using LC-MS/MS mass spectrometry and screened for angiogenesis and neurogenesis-related factors using protein arrays. Endothelial tube-like formation was supported by conditioned media from undifferentiated eBMSCs. Conversely, chondrogenic and osteogenic conditioned media was antiangiogenic as shown by significantly decreased length of endothelial tube-like structures and degree of branching compared to controls. Undifferentiated cells produced higher levels of angiogenesis-related proteins compared to chondrogenic and osteogenic pellets. In summary, eBMSCs produce an array of angiogenesis-related proteins and support angiogenesis in vitro via a paracrine mechanism. However, when these cells are differentiated chondrogenically or osteogenically, they produce a soluble factor(s) that inhibits angiogenesis. With respect to osteochondral tissue engineering, this may be beneficial for avascular articular cartilage formation but unfavourable for bone formation where a vascularized tissue is desired. © Copyright 2014, Mary Ann Liebert, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Damage to articular cartilage of the knee can be debilitating because it lacks the capacity to repair itself and can progress to degenerative disorders such as osteoarthritis. The current gold standard for treating cartilage defects is autologous chondrocyte implantation (ACI). However, one of the major limitations of ACI is the use of chondrocytes, which dedifferentiate when grown in vitro and lose their phenotype. It is not clear whether the dedifferentiated chondrocytes can fully redifferentiate upon in vivo transplantation. Studies have suggested that undifferentiated mesenchymal stem or stromal cells (MSCs) from bone marrow (BM) and adipose tissue (AT) can undergo chondrogenic differentiation. Therefore, the main aim of this thesis was to examine BM and AT as a cell source for chondrogenesis using clinical scaffolds. Initially, freshly isolated cells were compared with culture expanded MSCs from BM and AT in Chondro-Gide®, Alpha Chondro Shield® and Hyalofast™. MSCs were shown to grow better in the three scaffolds compared to freshly isolated cells. BM MSCs in Chondro-Gide® were shown to have increased deposition of cartilage specific extracellular matrix (ECM) compared to AT MSCs. Further, this thesis has sought to examine whether CD271 selected MSCs from AT were more chondrogenic than MSCs selected on the basis of plastic adherence (PA). It was shown that CD271+MSCs may have superior chondrogenic properties in vitro and in vivo in terms of ECM deposition. The repair tissue seen after CD271+MSC transplantation combined with Alpha Chondro Shield® was also less vascularised than that seen after transplantation with PA MSCs in the same scaffold, suggesting antiangiogenic activity. Since articular cartilage is an avascular tissue, CD271+MSCs may be a better suited cell type compared to the PA MSCs. Hence, this study has increased the current understanding of how different cell-scaffold combinations may best be used to promote articular cartilage repair.