4 resultados para bone cancer pain

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background - Few epidemiological studies have prospectively investigated preoperative and surgical risk factors for acute postoperative pain after surgery for breast cancer. We investigated demographic, psychological, pain-related and surgical risk factors in women undergoing resectional surgery for breast cancer. Methods - Primary outcomes were pain severity, at rest (PAR) and movement-evoked pain (MEP), in the first postoperative week. Results - In 338 women undergoing surgery, those with chronic preoperative pain were three times more likely to report moderate to severe MEP after breast cancer surgery (OR 3.18, 95% CI 1.45–6.99). Increased psychological ‘robustness’, a composite variable representing positive affect and dispositional optimism, was associated with lower intensity acute postoperative PAR (OR 0.63, 95% CI 0.48–0.82) and MEP (OR 0.71, 95% CI 0.54–0.93). Sentinel lymph node biopsy (SLNB) and intraoperative nerve division were associated with reduced postoperative pain. No relationship was found between preoperative neuropathic pain and acute pain outcomes; altered sensations and numbness postoperatively were more common after axillary sample or clearance compared with SLNB. Conclusion - Chronic preoperative pain, axillary surgery and psychological robustness significantly predicted acute pain outcomes after surgery for breast cancer. Preoperative identification and targeted intervention of subgroups at risk could enhance the recovery trajectory in cancer survivors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate cancer (CaP) patients with disseminated disease often suffer from severe cachexia, which contributes to mortality in advanced cancer. Human cachexia-associated protein (HCAP) was recently identified from a breast cancer library based on the available 20-amino acid sequence of proteolysis-inducing factor (PIF), which is a highly active cachectic factor isolated from mouse colon adenocarcinoma MAC16. Herein, we investigated the expression of HCAP in CaP and its potential involvement in CaP-associated cachexia. HCAP mRNA was detected in CaP cell lines, in primary CaP tissues and in its osseous metastases. In situ hybridization showed HCAP mRNA to be localized only in the epithelial cells in CaP tissues, in the metastatic foci in bone, liver and lymph node, but not in the stromal cells or in normal prostate tissues. HCAP protein was detected in 9 of 14 CaP metastases but not in normal prostate tissues from cadaveric donors or patients with organ-confined tumors. Our Western blot analysis revealed that HCAP was present in 9 of 19 urine specimens from cachectic CaP patients but not in 19 urine samples of noncachectic patients. HCAP mRNA and protein were also detected in LuCaP 35 and PC-3M xenografts from our cachectic animal models. Our results demonstrated that human CaP cells express HCAP and the expression of HCAP is associated with the progression of CaP and the development of CaP cachexia. © 2003 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone marrow-derived mesenchymal stem cells (BMSC) modulate inflammatory/immune responses and promote motor functional recovery after spinal cord injury (SCI). However, the effects of BMSC transplantation on central neuropathic pain and neuronal hyperexcitability after SCI remain elusive. This is of importance because BMSC-based therapies have been proposed for clinical treatment. We investigated the effects of BMSC transplantation on pain hypersensitivity in green fluorescent protein (GFP)-positive bone marrow-chimeric mice subjected to a contusion SCI, and the mechanisms of such effects. BMSC transplantation at day 3 post-SCI improved motor function and relieved SCI-induced hypersensitivities to mechanical and thermal stimulation. The pain improvements were mediated by suppression of protein kinase C-γ and phosphocyclic AMP response element binding protein expression in dorsal horn neurons. BMSC transplants significantly reduced levels of p-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (p-ERK1/2) in both hematogenous macrophages and resident microglia and significantly reduced the infiltration of CD11b and GFP double-positive hematogenous macrophages without decreasing the CD11b-positive and GFP-negative activated spinal-microglia population. BMSC transplants prevented hematogenous macrophages recruitment by restoration of the blood-spinal cord barrier (BSCB), which was associated with decreased levels of (a) inflammatory cytokines (tumor necrosis factor-α, interleukin-6); (b) mediators of early secondary vascular pathogenesis (matrix metallopeptidase 9); (c) macrophage recruiting factors (CCL2, CCL5, and CXCL10), but increased levels of a microglial stimulating factor (granulocyte-macrophage colony-stimulating factor). These findings support the use of BMSC transplants for SCI treatment. Furthermore, they suggest that BMSC reduce neuropathic pain through a variety of related mechanisms that include neuronal sparing and restoration of the disturbed BSCB, mediated through modulation of the activity of spinal-resident microglia and the activity and recruitment of hematogenous macrophages.