2 resultados para bivariate analysis

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper assesses the extent to which the equity markets of Hungary, Poland the Czech Republic and Russia have become less segmented. Using a variety of tests it is shown there has been a consistent increase in the co-movement of some Eastern European markets and developed markets. Using the variance decompositions from a vector autoregressive representation of returns it is shown that for Poland and Hungary global factors are having an increasing influence on equity returns, suggestive of increased equity market integration. In this paper we model a system of bivariate equity market correlations as a smooth transition logistic trend model in order to establish how rapidly the countries of Eastern Europe are moving away from market segmentation. We find that Hungary is the country which is becoming integrated the most quickly. © 2005 ELsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Pearson's correlation coefficient only tests whether the data fit a linear model. With large numbers of observations, quite small values of r become significant and the X variable may only account for a minute proportion of the variance in Y. Hence, the value of r squared should always be calculated and included in a discussion of the significance of r. 2. The use of r assumes that a bivariate normal distribution is present and this assumption should be examined prior to the study. If Pearson's r is not appropriate, then a non-parametric correlation coefficient such as Spearman's rs may be used. 3. A significant correlation should not be interpreted as indicating causation especially in observational studies in which there is a high probability that the two variables are correlated because of their mutual correlations with other variables. 4. In studies of measurement error, there are problems in using r as a test of reliability and the ‘intra-class correlation coefficient’ should be used as an alternative. A correlation test provides only limited information as to the relationship between two variables. Fitting a regression line to the data using the method known as ‘least square’ provides much more information and the methods of regression and their application in optometry will be discussed in the next article.