26 resultados para bit-wise CPA
em Aston University Research Archive
Resumo:
In developing neural network techniques for real world applications it is still very rare to see estimates of confidence placed on the neural network predictions. This is a major deficiency, especially in safety-critical systems. In this paper we explore three distinct methods of producing point-wise confidence intervals using neural networks. We compare and contrast Bayesian, Gaussian Process and Predictive error bars evaluated on real data. The problem domain is concerned with the calibration of a real automotive engine management system for both air-fuel ratio determination and on-line ignition timing. This problem requires real-time control and is a good candidate for exploring the use of confidence predictions due to its safety-critical nature.
Resumo:
The need for low bit-rate speech coding is the result of growing demand on the available radio bandwidth for mobile communications both for military purposes and for the public sector. To meet this growing demand it is required that the available bandwidth be utilized in the most economic way to accommodate more services. Two low bit-rate speech coders have been built and tested in this project. The two coders combine predictive coding with delta modulation, a property which enables them to achieve simultaneously the low bit-rate and good speech quality requirements. To enhance their efficiency, the predictor coefficients and the quantizer step size are updated periodically in each coder. This enables the coders to keep up with changes in the characteristics of the speech signal with time and with changes in the dynamic range of the speech waveform. However, the two coders differ in the method of updating their predictor coefficients. One updates the coefficients once every one hundred sampling periods and extracts the coefficients from input speech samples. This is known in this project as the Forward Adaptive Coder. Since the coefficients are extracted from input speech samples, these must be transmitted to the receiver to reconstruct the transmitted speech sample, thus adding to the transmission bit rate. The other updates its coefficients every sampling period, based on information of output data. This coder is known as the Backward Adaptive Coder. Results of subjective tests showed both coders to be reasonably robust to quantization noise. Both were graded quite good, with the Forward Adaptive performing slightly better, but with a slightly higher transmission bit rate for the same speech quality, than its Backward counterpart. The coders yielded acceptable speech quality of 9.6kbps for the Forward Adaptive and 8kbps for the Backward Adaptive.
Resumo:
We investigate the use of different direct detection modulation formats in a wavelength switched optical network. We find the minimum time it takes a tunable sampled grating distributed Bragg reflector laser to recover after switching from one wavelength channel to another for different modulation formats. The recovery time is investigated utilizing a field programmable gate array which operates as a time resolved bit error rate detector. The detector offers 93 ps resolution operating at 10.7 Gb/s and allows for all the data received to contribute to the measurement, allowing low bit error rates to be measured at high speed. The recovery times for 10.7 Gb/s non-return-to-zero on–off keyed modulation, 10.7 Gb/s differentially phase shift keyed signal and 21.4 Gb/s differentially quadrature phase shift keyed formats can be as low as 4 ns, 7 ns and 40 ns, respectively. The time resolved phase noise associated with laser settling is simultaneously measured for 21.4 Gb/s differentially quadrature phase shift keyed data and it shows that the phase noise coupled with frequency error is the primary limitation on transmitting immediately after a laser switching event.
Resumo:
We present a novel approach to the improvement of the bit error rate (BER) in optical communications. We propose a design of advanced optical receiver enhanced by a nonlinear all-optical decision element. As a particular example, we demonstrate a substantial improvement in the BER over the conventional receiver for operation at 40?Gbits/s.
Resumo:
We show that using a shortened delay in the demodulator for DQPSK channels can significantly reduce the XPM penalties caused by transmitting 40Gb/s DQPSK channels alongside 10Gb/s OOK channels. © 2010 Optical Society of America.
Bit-error rate performance of 20 Gbit/s WDM RZ-DPSK non-slope matched submarine transmission systems
Resumo:
Applying direct error counting, we assess the performance of 20 Gbit/s wavelength-division multiplexing return-to-zero differential phase-shift keying (RZ-DPSK) transmission at 0.4 bit/(s Hz) spectral efficiency for application on installed non-zero dispersion-shifted fibre based transoceanic submarine systems. The impact of the pulse duty cycle on the system performance is investigated and the reliability of the existing theoretical approaches to the BER estimation for the RZ-DPSK format is discussed.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
We show that using a shortened delay in the demodulator for DQPSK channels can significantly reduce the XPM penalties caused by transmitting 40Gb/s DQPSK channels alongside 10Gb/s OOK channels. © 2010 Optical Society of America.
Resumo:
We present a novel approach to the improvement of the bit error rate (BER) in optical communications. We propose a design of advanced optical receiver enhanced by a nonlinear all-optical decision element. As a particular example, we demonstrate a substantial improvement in the BER over the conventional receiver for operation at 40 Gbits/s. © 2006 Optical Society of America.
Resumo:
We analyze theoretically the interplay between optical return-to-zero signal degradation due to timing jitter and additive amplified-spontaneous-emission noise. The impact of these two factors on the performance of a square-law direct detection receiver is also investigated. We derive an analytical expression for the bit-error probability and quantitatively determine the conditions when the contributions of the effects of timing jitter and additive noise to the bit error rate can be treated separately. The analysis of patterning effects is also presented. © 2007 IEEE.
Resumo:
Effect of the carrier shape in the ultra high dense wavelength division multiplexing (WDM) return to zero differential phase shift keying (RZ-DPSK) transmission has been examined through numerical optimization of the pulse form, duty cycle and narrow multiplex/de-multiplex (MUX/DEMUX) filtering parameters. © 2007 Springer Science+Business Media, LLC.