4 resultados para bisphenol A

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal degradation of 2,6,2',6'-tetrabromo-4,4-pm-isoproylidene-di phenol (tetrabromobisphenol A) (TBBPA) has been investigated and a mechanism for its thermal degradation is suggested. TBBPA is a comonomer widely used in epoxy and in unsaturated polyester resins to impart fire retardance. These resins find a common use in electric and electronic equipment. The presence of bromine atoms is the key factor in fire retardant activity, while on the other hand it represents an ecological problem when pyrolytic recycling is programmed at the end of the useful life of such items. However, pyrolysis is the more advantageous recycling system for thermosetting resins and thus efforts should be made to control the pyrolysis in order to avoid or minimize the development of toxics. Homolytic scission of the aromatic bromine and condensation of aromatic bromine with phenolic hydroxyl are the main processes occuring in the range 270-340°C. A large amount of charred residue is left as a consequence of condensation reactions. HBr and brominated phenols and bisphenols are the main volatile products formed. Brominated dibenzodioxins structures are included in the charred residue and not evolved in the volatile phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A family of copper oxide catalysts with loadings spanning 1–5 wt% were dispersed on a three dimensional, mesoporous TUD-1 silica through a hydrothermal, surfactant-free route employing tetraethylene glycol as a structure-directing agent. Their bulk and surface properties were characterized by N2 physisorption, XRD, DRUVS, EPR, TEM and Raman spectroscopy, confirming the expected mesoporous wormhole/foam support morphology and presence of well-dispersed CuO nanoparticles (∼5–20 nm). The catalytic performance of Cu/TUD-1 was evaluated as heterogeneous Fenton-like catalysts for Bisphenol A (BPA) oxidative degradation in the presence of H2O2 as a function of [H2O2], and CuO loading. Up to 90.4% of 100 ppm BPA removal was achieved over 2.5 wt% Cu/TUD-1 within 180 min, with negligible Cu leaching into the treated water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diglycidyl ether of tetrabromobisphenol A, the diglycidyl ether of bisphenol A and their mixture was cured by 4,4'-diaminodiphenyl methane. The pyrolysis of the obtained epoxy resins was studied by TG, DSC, TG/FTIR as well as FTIR characterization of pyrolysis residues. The gaseous and high boiling pyrolysis products were collected, characterized by GC/MS and their formation is discussed. The brominated epoxy resins are thermally less stable than the non-brominated ones. This effect is caused by the amine-containing hardener. The degradation initiation reaction is associated with the formation of hydrogen bromide which further destabilizes the epoxy network. The effect of the curing agent can be used in recycling of epoxy resins to separate brominated pyrolysis products from non-brominated ones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Light curable dimethacrylate resin composites undergo free radical photopolymerisation in response to blue light (wavelength 450-500 nm) and may offer superior handling and setting characteristics for novel hard tissue repair materials. The current investigation aims to determine the optimum formulation of bisphenol-A glycidyl methacrylate and triethyleneglycoldimethacrylate (bisGMA/TEGDMA) or urethane dimethacrylate (UDMA)/TEGDMA resin mixtures and the effect of Bioglass incorporation on the rate of polymerisation (RP), degree of conversion (DC) and flexural strength (FS) of light-curable filled resin composites (FRCs). Experimental photoactive resins containing a range of bisGMA, UDMA and TEGDMA ratios and/or filled with non-silanised irregular or spherical 45S5-Bioglass (50 μm; 5-40 wt%) and/or silanised silicate glass filler particulates (0.7 μm; 50-70 wt%) were tested. RP and DC were analysed in real-time using nearinfrared spectroscopy. FS of resins and FRCs were determined using three-point flexural strength tests. UDMA/TEGDMA resins exhibited increased DC compared with bisGMA/TEGDMA resins (p<0.05). The addition of spherical particles of Bioglass had a detrimental effect on the FS (p>0.05), whereas they increased DC of UDMA/TEGDMA resins (p<0.05). Addition of irregular shaped Bioglass particles increased the FS of UDMA/TEGDMA resins up to 20 wt% Bioglass (p<0.05). The flexibility and strength conferred by the urethane group in UDMA may result in enhanced physical and mechanical properties compared with conventional resins containing bulky (bisGMA) molecules. Addition of 45S5-Bioglass with specific filler content, size and morphology resulted in enhanced mechanical and physical properties of UDMA/TEGDMA composites. © (2014) Trans Tech Publications, Switzerland.