3 resultados para biological screening
em Aston University Research Archive
Resumo:
The new technology of combinational chemistry has been introduced to pharmaceutical companies, improving and making more efficient the process of drug discovery. Automated combinatorial chemistry in the solution-phase has been used to prepare a large number of compounds of anti-cancer screening. A library of caffeic acid derivatives has been prepared by the Knoevenagel condensation of aldehyde and active methylene reagents. These products have been screened against two murine adenocarcinoma cell lines (MAC) which are generally refractive to standard cytotoxic agents. The target of anti-proliferative action was the 12- and 15-lipoxygenase enzymes upon which these tumour cell lines have been shown to be dependent for proliferation and metastasis. Compounds were compared to a standard lipoxygenase inhibitor and if found to be active anti-proliferative agents were tested for their general cytotoxicity and lipoxygenase inhibition. A solid-phase bound catalyst, piperazinomethyl polystyrene, was devised and prepared for the improved generation of Knoevenagel condensation products. This piperazinomethyl polystyrene was compared to the traditional liquid catalyst, piperidine, and was found to reduce the amount of by-products formed during reaction and had the advantage of easy removal from the reaction. 13C NMR has been used to determine the E/Z stereochemistry of Knoevenagel condensation products. Soluble polymers have been prepared containing different building blocks pendant to the polymer backbone. Aldehyde building blocks incorporated into the polymer structure have been subjected to the Knoevenagel condensation. Cleavage of the resultant pendant molecules has proved that soluble linear polymers have the potential to generate combinatorial mixtures of known composition for biological testing. Novel catechol derivatives have been prepared by traditional solution-phase chemistry with the intention of transferring their synthesis to a solid-phase support. Catechol derivatives prepared were found to be active inhibitors of lipoxygenase. Soluble linear supports for the preparation of these active compounds were designed and tested. The aim was to develop a support suitable for the automated synthesis of libraries of catechol derivatives for biological screening.
Resumo:
Many important natural products contain the furan-2(5H)-one structure. The structure of this molecule lends itself to manipulation using combinatorial techniques due to the presence of more than one site for the attachment of different suhstituents. By developing different reaction schemes at the three sites available for attachment on the furan-2(5H)-one scaffold, combinatorial chemistry techniques can be employed to assemble libraries of novel furan 2(5H)-ones. These libraries can then be entered into various biological screening programmes. This approach will enable a vast diversity or compounds to be examined, in the hope or finding new biologically active Iead structures. The work in this thesis has investigated the potential that combinatorial chemistry has in the quest for new biologically active lead structures based on the furan-2(5H)-one structure. Different reactions were investigated with respect to their suitability for inclusion in a library. Once sets of reactions at the various sites had been established, the viability of these reactions in the assembly of combinatorial libraries was investigated. Purification methods were developed, and the purified products entered into suitable biological screening tests. Results from some of these tests were optimised using structure activity relationships, and the resulting products re-screened. The screening tests performed were for anticancer and antimicrobial activity, cholecystokinin (CCK-B) antagonism and anti-inflammatory activity (in the quest for novel cyclo-oxygenase (COX-2) selective non-steroidal anti-inflammatory drugs). It has been shown that many reactions undergone by the furan-2(5H)-one structure are suitable for the assembly of a combinatorial library. Investigation into the assembly of different libraries has been carried out with initial screening results included. From this work, further investigation into combinatorial library assembly and structure activity relationships of screened reaction products can be undertaken.
Resumo:
Using microarrays to probe protein-protein interactions is becoming increasingly attractive due to their compatibility with highly sensitive detection techniques, selectivity of interaction, robustness and capacity for examining multiple proteins simultaneously. The major drawback to using this approach is the relatively large volumes and high concentrations necessary. Reducing the protein array spot size should allow for smaller volumes and lower concentrations to be used as well as opening the way for combination with more sensitive detection technologies. Dip-Pen Nanolithography (DPN) is a recently developed technique for structure creation on the nano to microscale with the capacity to create biological architectures. Here we describe the creation of miniaturised microarrays, 'mesoarrays', using DPN with protein spots 400× smaller by area compared to conventional microarrays. The mesoarrays were then used to probe the ERK2-KSR binding event of the Ras/Raf/MEK/ERK signalling pathway at a physical scale below that previously reported. Whilst the overall assay efficiency was determined to be low, the mesoarrays could detect KSR binding to ERK2 repeatedly and with low non-specific binding. This study serves as a first step towards an approach that can be used for analysis of proteins at a concentration level comparable to that found in the cellular environment.