4 resultados para bioactive molecules
em Aston University Research Archive
Resumo:
Microporous, poly(ε-caprolactone) (PCL) matrices were loaded with progesterone by precipitation casting using co-solutions of PCL and progesterone in acetone. Progesterone loadings up to 32% w/w were readily achieved by increasing the drug content of the starting PCL solution. The kinetics of steroid release in PBS at 37°C over 10 days could be described effectively by a diffusional release model although the Korsmeyer-Peppas model indicated the involvement of multiple release phenomena. The diffusion rate constant (D) increased from 8 to 24 μg/mg matrix/day0.5 as the drug loading increased from 3.6 to 12.4% w/w. A total cumulative release of 75%-95% indicates the high efficiency of steroid delivery. Increasing the matrix density from 0.22 to 0.39 g/cm3, by increasing the starting PCL solution concentration, was less effective in changing drug release kinetics. Retention of anti-proliferative activity of released steroid was confirmed using cultures of breast cancer epithelial (MCF-7) cells. Progesterone released from PCL matrices into PBS at 37°C over 14 days retarded the growth of MCF-7 cells by a factor of at least 3.5 compared with progesterone-free controls. These findings recommend further investigation of precipitation-cast PCL matrices for delivery of bioactive molecules such as anti-proliferative agents from implanted, inserted or topical devices.
Resumo:
Significance: Oxidized phospholipids are now well-recognized as markers of biological oxidative stress and bioactive molecules with both pro-inflammatory and anti-inflammatory effects. While analytical methods continue to be developed for studies of generic lipid oxidation, mass spectrometry (MS) has underpinned the advances in knowledge of specific oxidized phospholipids by allowing their identification and characterization, and is responsible for the expansion of oxidative lipidomics. Recent Advances: Studies of oxidized phospholipids in biological samples, both from animal models and clinical samples, have been facilitated by the recent improvements in MS, especially targeted routines that depend on the fragmentation pattern of the parent molecular ion and improved resolution and mass accuracy. MS can be used to identify selectively individual compounds or groups of compounds with common features, which greatly improves the sensitivity and specificity of detection. Application of these methods have enabled important advances in understanding the mechanisms of inflammatory diseases such as atherosclerosis, steatohepatitis, leprosy and cystic fibrosis, and offer potential for developing biomarkers of molecular aspects of the diseases. Critical Issues and Future Directions: The future in this field will depend on development of improved MS technologies, such as ion mobility, novel enrichment methods and databases and software for data analysis, owing to the very large amount of data generated in these experiments. Imaging of oxidized phospholipids in tissue MS is an additional exciting direction emerging that can be expected to advance understanding of physiology and disease.
Resumo:
Bioactive molecules in berries may be helpful in reducing the risk of oral diseases. The aim of this study was to determine the effect of bilberry consumption on the outcome of a routine dental clinical parameter of inflammation, bleeding on probing (BOP), as well as the impact on selected biomarkers of inflammation, such as cytokines, in gingival crevicular fluid (GCF) in individuals with gingivitis. Study individuals who did not receive standard of care treatment were allocated to either a placebo group or to groups that consumed either 250 or 500 g bilberries daily over seven days. The placebo group consumed an inactive product (starch). A study group, receiving standard of care (debridement only) was also included to provide a reference to standard of care treatment outcome. Cytokine levels were assayed using the Luminex MagPix system. The mean reduction in BOP before and after consumption of test product over 1 week was 41% and 59% in the groups that consumed either 250 or 500 g of bilberries/day respectively, and was 31% in the placebo group, and 58% in the standard of care reference group. The analysis only showed a significantreduction in cytokine levels in the group that consumed 500 g of bilberries/day. A statistically significant reduction was observed for IL-1β (p = 0.025), IL-6 (p = 0.012) and VEGF (p = 0.017) in GCF samples in the group that consumed 500 g of bilberries daily. It appears that berry intake has an ameliorating effect on some markers of gingival inflammation reducing gingivitis to a similar extent compared to standard of care.
Resumo:
Microporous polycaprolactone (PCL) matrices loaded with hydrophobic steroidal drugs or a hydrophilic drug - pilocarpine hydrochloride - were produced by precipitation casting using solutions of PCL in acetone. The efficiency of steroid incorporation in the final matrix (progesterone (56 %) testosterone (46 %) dexamethasone (80 %)) depended on the nature of the drug initially co-dissolved in the PCL solution. Approximately 90 % w/w of the initial load of progesterone, 85 % testosterone and 50 % dexamethasone was released from the matrices in PBS at 37°C over 8 days. Pilocarpine hydrochloride (PH)-loaded PCL matrices, prepared by dispersion of powder in PCL solution, released 70-90 % of the PH content over 12 days in PBS. Application of the Higuchi model revealed that the kinetics of steroid and PH release were consistent with a Fickian diffusion mechanism with corresponding diffusion coefficients of 5.8 × 10-9 (progesterone), 3.9 × 10 -9 (testosterone), 7.1 × 10-10 (dexamethasone) and 22 × 10-8 cm2/s (pilocarpine hydrochloride). The formulation techniques described are expected to be useful for production of implantable, insertable and topical devices for sustained delivery of a range of bioactive molecules of interest in drug delivery and tissue engineering.