18 resultados para batch production

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Modern injection-moulding machinery which produces several, pairs of plastic footwear at a time brought increased production planning problems to a factory. The demand for its footwear is seasonal but the company's manning policy keeps a fairly constant production level thus determining the aggregate stock. Production planning must therefore be done within the limitations of a specified total stock. The thesis proposes a new production planning system with four subsystems. These are sales forecasting, resource planning, and two levels of production scheduling: (a) aggregate decisions concerning the 'manufacturing group' (group of products) to be produced in each machine each week, and (b) detailed decisions concerning the products within a manufacturing group to be scheduled into each mould-place. The detailed scheduling is least dependent on improvements elsewhere so the sub-systems were tackled in reverse order. The thesis concentrates on the production scheduling sub-systems which will provide most. of the benefits. The aggregate scheduling solution depends principally on the aggregate stocks of each manufacturing group and their division into 'safety stocks' (to prevent shortages) and 'freestocks' (to permit batch production). The problem is too complex for exact solution but a good heuristic solution, which has yet to be implemented, is provided by minimising graphically immediate plus expected future costs. The detailed problem splits into determining the optimal safety stocks and batch quantities given the appropriate aggregate stocks. It.is found that the optimal safety stocks are proportional to the demand. The ideal batch quantities are based on a modified, formula for the Economic Batch Quantity and the product schedule is created week by week using a priority system which schedules to minimise expected future costs. This algorithm performs almost optimally. The detailed scheduling solution was implemented and achieved the target savings for the whole project in favourable circumstances. Future plans include full implementation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background aims: The cost-effective production of human mesenchymal stromal cells (hMSCs) for off-the-shelf and patient specific therapies will require an increasing focus on improving product yield and driving manufacturing consistency. Methods: Bone marrow-derived hMSCs (BM-hMSCs) from two donors were expanded for 36 days in monolayer with medium supplemented with either fetal bovine serum (FBS) or PRIME-XV serum-free medium (SFM). Cells were assessed throughout culture for proliferation, mean cell diameter, colony-forming potential, osteogenic potential, gene expression and metabolites. Results: Expansion of BM-hMSCs in PRIME-XV SFM resulted in a significantly higher growth rate (P < 0.001) and increased consistency between donors compared with FBS-based culture. FBS-based culture showed an inter-batch production range of 0.9 and 5 days per dose compared with 0.5 and 0.6 days in SFM for each BM-hMSC donor line. The consistency between donors was also improved by the use of PRIME-XV SFM, with a production range of 0.9 days compared with 19.4 days in FBS-based culture. Mean cell diameter has also been demonstrated as a process metric for BM-hMSC growth rate and senescence through a correlation (R2 = 0.8705) across all conditions. PRIME-XV SFM has also shown increased consistency in BM-hMSC characteristics such as per cell metabolite utilization, in vitro colony-forming potential and osteogenic potential despite the higher number of population doublings. Conclusions: We have increased the yield and consistency of BM-hMSC expansion between donors, demonstrating a level of control over the product, which has the potential to increase the cost-effectiveness and reduce the risk in these manufacturing processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A view has emerged within manufacturing and service organizations that the operations management function can hold the key to achieving competitive edge. This has recently been emphasized by the demands for greater variety and higher quality which must be set against a background of increasing cost of resources. As nations' trade barriers are progressively lowered and removed, so producers of goods and service products are becoming more exposed to competition that may come from virtually anywhere around the world. To simply survive in this climate many organizations have found it necessary to improve their manufacturing or service delivery systems. To become real ''winners'' some have adopted a strategic approach to operations and completely reviewed and restructured their approach to production system design and operations planning and control. The articles in this issue of the International journal of Operations & Production Management have been selected to illustrate current thinking and practice in relation to this situation. They are all based on papers presented to the Sixth International Conference of the Operations Management Association-UK which was held at Aston University in June 1991. The theme of the conference was "Achieving Competitive Edge" and authors from 15 countries around the world contributed to more than 80 presented papers. Within this special issue five topic areas are addressed with two articles relating to each. The topics are: strategic management of operations; managing change; production system design; production control; and service operations. Under strategic management of operations De Toni, Filippini and Forza propose a conceptual model which considers the performance of an operating system as a source of competitive advantage through the ''operation value chain'' of design, purchasing, production and distribution. Their model is set within the context of the tendency towards globalization. New's article is somewhat in contrast to the more fashionable literature on operations strategy. It challenges the validity of the current idea of ''world-class manufacturing'' and, instead, urges a reconsideration of the view that strategic ''trade-offs'' are necessary to achieve a competitive edge. The importance of managing change has for some time been recognized within the field of organization studies but its relevance in operations management is now being realized. Berger considers the use of "organization design", ''sociotechnical systems'' and change strategies and contrasts these with the more recent idea of the ''dialogue perspective''. A tentative model is suggested to improve the analysis of different strategies in a situation specific context. Neely and Wilson look at an essential prerequisite if change is to be effected in an efficient way, namely product goal congruence. Using a case study as its basis, their article suggests a method of measuring goal congruence as a means of identifying the extent to which key performance criteria relating to quality, time, cost and flexibility are understood within an organization. The two articles on production systems design represent important contributions to the debate on flexible production organization and autonomous group working. Rosander uses the results from cases to test the applicability of ''flow groups'' as the optimal way of organizing batch production. Schuring also examines cases to determine the reasons behind the adoption of ''autonomous work groups'' in The Netherlands and Sweden. Both these contributions help to provide a greater understanding of the production philosophies which have emerged as alternatives to more conventional systems -------for intermittent and continuous production. The production control articles are both concerned with the concepts of ''push'' and ''pull'' which are the two broad approaches to material planning and control. Hirakawa, Hoshino and Katayama have developed a hybrid model, suitable for multistage manufacturing processes, which combines the benefits of both systems. They discuss the theoretical arguments in support of the system and illustrate its performance with numerical studies. Slack and Correa's concern is with the flexibility characteristics of push and pull material planning and control systems. They use the case of two plants using the different systems to compare their performance within a number of predefined flexibility types. The two final contributions on service operations are complementary. The article by Voss really relates to manufacturing but examines the application of service industry concepts within the UK manufacturing sector. His studies in a number of companies support the idea of the ''service factory'' and offer a new perspective for manufacturing. Harvey's contribution by contrast, is concerned with the application of operations management principles in the delivery of professional services. Using the case of social-service provision in Canada, it demonstrates how concepts such as ''just-in-time'' can be used to improve service performance. The ten articles in this special issue of the journal address a wide range of issues and situations. Their common aspect is that, together, they demonstrate the extent to which competitiveness can be improved via the application of operations management concepts and techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The importance of the changeover process in the manufacturing industry is becoming widely recognised. Changeover is a complete process of changing between the manufacture of one product to manufacture of an alternative product until specified production and quality rates are reached. The initiatives to improve changeover exist in industry, as better changeover process typically contribute to improved quality performance. A high-quality and reliable changeover process can be achieved through implementation of continuous or radical improvements. This research examines the changeover process of Saudi Arabian manufacturing firms because Saudi Arabia’s government is focused on the expansion of GDP and increasing the number of export manufacturing firms. Furthermore, it is encouraging foreign manufacturing firms to invest within Saudi Arabia. These initiatives, therefore, require that Saudi manufacturing businesses develop the changeover practice in order to compete in the market and achieve the government’s objectives. Therefore, the aim of this research is to discover the current status of changeover process implementation in Saudi Arabian manufacturing businesses. To achieve this aim, the main objective of this research is to develop a conceptual model to understand and examine the effectiveness of the changeover process within Saudi Arabian manufacturing firms, facilitating identification of those activities that affect the reliability and high-quality of the process. In order to provide a comprehensive understanding of this area, this research first explores the concept of quality management and its relationship to firm performance and the performance of manufacturing changeover. An extensive body of literature was reviewed on the subject of lean manufacturing and changeover practice. A research conceptual model was identified based on this review, and focus was on providing high-quality and reliable manufacturing changeover processes during set-up in a dynamic environment. Exploratory research was conducted in sample Saudi manufacturing firms to understand the features of the changeover process within the manufacturing sector, and as a basis for modifying the proposed conceptual model. Qualitative research was employed in the study with semi-structured interviews, direct observations and documentation in order to understand the real situation such as actual daily practice and current status of changeover process in the field. The research instrument, the Changeover Effectiveness Assessment Tool (CEAT) was developed to evaluate changeover practices. A pilot study was conducted by examining the CEAT, proposed for the main research. Consequently, the conceptual model was modified and CEAT was improved in response to the pilot study findings. Case studies have been conducted within eight Saudi manufacturing businesses. These case studies assessed the implementation of manufacturing changeover practice in the lighting and medical products sectors. These two sectors were selected based on their operation strategy which was batch production as well as the fact that they fulfilled the research sampling strategy. The outcomes of the research improved the conceptual model, ultimately to facilitate the firms’ adoption and rapid implementation of a high-quality and reliability changeover during the set-up process. The main finding of this research is that Quality’s factors were considering the lowest levels comparing to the other factors which are People, Process and Infrastructure. This research contributes to enable Saudi businesses to implement the changeover process by adopting the conceptual model. In addition, the guidelines for facilitating implementation were provided in this thesis. Therefore, this research provides insight to enable the Saudi manufacturing industry to be more responsive to rapidly changing customer demands.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A review of the literature of work carried out on dextransucrase production, purification, immobilization and reactions has been carried out. A brief review has also been made of the literature concerning general enzyme biotechnology and fermentation technology. Fed-batch fermentation of the bacteria Leuconostoc mesenteroides NRRL B512 (F) to produce dextransucrase has formed the major part of this research. Aerobic and anaerobic fermentations have been studied using a 16 litre New Brunswick fermenter which has a 3-12 litre working volume. The initial volume of broth used in the studies was 6 litres. The results of the fed-batch fermentations showed for the first time that yields of dextransucrase are much higher under the anaerobic conditions than during the aerobic fermentations. Dextransucrase containing 300-350 DSU/cm3 of enzyme activity has been obtained during the aerobic fermentations, while in the anaerobic fermentations, enzyme yields containing 450-500 DSU/cm3 have been obtained routinely. The type of yeast extract used in the fermentation medium has been found to have significant effects on enzyme yield. Of the different types studied, the Gistex Standard was found to be the type that favoured the highest enzyme production. Studies have also been carried out on the effect of agitation rate and antifoam on the enzyme production during the anaerobic experiments. Agitation rates of up to 600 rpm were found not to affect the enzyme yield, however, the presence of antifoam in the medium led to a significant reduction in enzyme activity (less than 300 DSU/cm3). Scale-up of the anaerobic fermentations has been performed at up to the 1000 litre level with enzyme yields containing more than 400 DSU/cm3 of activity being produced. Some of the enzyme produced at this scale was used for the first time to produce dextran on an industrial scale via the enzyme route, with up to 99% conversion of sucrose to dextran being obtained. An attempt has been made at continuous dextransucrase production. Cell washout was observed to occur at dilution rates of greater than 0.4 h-1. Dextransucrase containing up to 25 DSU/cm3/h has been produced continuously.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The available literature concerning dextransucrase and dextran production and purification has been reviewed along with the reaction mechanisms of the enzyme. A discussion of basic fermentation theory is included, together with a brief description of bioreactor hydrodynamics and general biotechnology. The various fermenters used in this research work are described in detail, along with the various experimental techniques employed. The micro-organism Leuconostoc mesenteroides NRRL B512 (F) secretes dextransucrase in the presence of an inducer, sucrose, this being the only known inducer of the enzyme. Dextransucrase is a growth related product and a series of fed-batch fermentations have been carried out to extend the exponential growth phase of the organism. These experiments were carried out in a number of different sized vessels, ranging in size from 2.5 to 1,000 litres. Using a 16 litre vessel, dextransucrase activities in excess of 450 DSU/cm3 (21.67 U/cm3) have been obtained under non-aerated conditions. It has also been possible to achieve 442 DSU/cm3 (21.28 U/cm3) using the 1,000 litre vessel, although this has not been done consistently. A 1 litre and a 2.5 litre vessel were used for the continuous fermentations of dextransucrase. The 2.5 litre vessel was a very sophisticated MBR MiniBioreactor and was used for the majority of continuous fermentations carried out. An enzyme activity of approximately 108 DSU/cm3 (5.20 U/cm3) was achieved at a dilution rate of 0.50 h-1, which corresponds to the maximum growth rate of the cells under the process conditions. A number of continuous fermentations were operated for prolonged periods of time, with experimental run-times of up to 389 h being recorded without any incidence of contamination. The phenomenon of enzyme enhancement on hold-up of up to 100% was also noted during these fermentations, with dextransucrase of activity 89.7 DSU/cm3 (4.32 U/cm3) being boosted to 155.7 DSU/cm3 (7.50 U/cm3) following 24 hours of hold-up. These findings support the recommendation of a second reactor being placed in series with the existing vessel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

What this thesis proposes is a methodology to assist repetitive batch manufacturers in the adoption of certain aspects of the Lean Production principles. The methodology concentrates on the reduction of inventory through the setting of appropriate batch sizes, taking account of the effect of sequence dependent set-ups and the identification and elimination of bottlenecks. It uses a simple Pareto and modified EBQ based analysis technique to allocate items to period order day classes based on a combination of each item's annual usage value and set-up cost. The period order day classes the items are allocated to are determined by the constraints limits in the three measured dimensions, capacity, administration and finance. The methodology overcomes the limitations associated with MRP in the area of sequence dependent set-ups, and provides a simple way of setting planning parameters taking this effect into account by concentrating on the reduction of inventory through the systematic identification and elimination of bottlenecks through set-up reduction processes, so allowing batch sizes to reduce. It aims to help traditional repetitive batch manufacturers in a route to continual improvement by: Highlighting those areas where change would bring the greatest benefits. Modelling the effect of proposed changes. Quantifying the benefits that could be gained through implementing the proposed changes. Simplifying the effort required to perform the modelling process. It concentrates on increasing flexibility through managed inventory reduction through rationally decreasing batch sizes, taking account of sequence dependent set-ups and the identification and elimination of bottlenecks. This was achieved through the development of a software modelling tool, and validated through a case study approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this investigation was to study the chemical reactions occurring during the batchwise production of a butylated melamine-formaldehyde resin, in order to optimise the efficiency and economics of the batch processes. The batch process models are largely empirical in nature as the reaction mechanism is unknown. The process chemistry and the commercial manufacturing method are described. A small scale system was established in glass and the ability to produce laboratory resins with the required quality was demonstrated, simulating the full scale plant. During further experiments the chemical reactions of methylolation, condensation and butylation were studied. The important process stages were identified and studied separately. The effects of variation of certain process parameters on the chemical reactions were also studied. A published model of methylolation was modified and used to simulate the methylolation stage. A major result of this project was the development of an indirect method for studying the condensation and butylation reactions occurring during the dehydration and acid reaction stages, as direct quantitative methods were not available. A mass balance method was devised for this purpose and used to collect experimental data. The reaction scheme was verified using this data. The reactions stages were simulated using an empirical model. This has revealed new information regarding the mechanism and kinetics of the reactions. Laboratory results were shown to be comparable with plant scale results. This work has improved the understanding of the batch process, which can be used to improve product consistency. Future work has been identified and recommended to produce an optimum process and plant design to reduce the batch time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The initial aim of this project was to improve the performance of a chromatographic bioreactor-separator (CBRS). In such a system, a dilute enzyme solution is pumped continuously through a preparative chromatographic column, while pulses of substrate are periodically injected on to the column. Enzymic reaction and separation are therefore performed in a single unit operation. The chromatographic columns used were jacketed glass columns ranging from 1 to 2 metres long with an internal diameter of 1.5 cm. Linking these columns allowed 1, 2, 3 and 4 metre long CBRS systems to be constructed. The hydrolysis of lactose in the presence of β~galactosidase was the reaction of study. From previous work at Aston University, there appeared to be no difficulties in achieving complete lactose hydrolysis in a CBRS. There did, however, appear to be scope for improving the separative performance, so this was adopted as an initial goal. Reducing the particle size of the stationary phase was identified as a way of achieving this improvement. A cation exchange resin was selected which had an average particle size of around half that previously used when studying this reaction. A CBRS system was developed which overcame the operational problems (such as high pressure drop development) associated with use of such a particle size. A significant improvement in separative power was achieved. This was shown by an increase in the number of theoretical plates (N) from about 500 to about 3000 for a 2 metre long CBRS, coupled with higher resolution. A simple experiment with the 1 metre column showed that combined bioreaction and separation was achievable in this system. Having improved the separative performance of the system, the factors affecting enzymic reaction in a CBRS were investigated; including pulse volume and the degree of mixing between enzyme and substrate. The progress of reaction in a CBRS was then studied. This information was related to the interaction of reaction and separation over the reaction zone. The effect of injecting a pulse over a length of time as in CBRS operation was simulated by fed batch experiments. These experiments were performed in parallel with normal batch experiments where the substrate is mixed almost instantly with the enzyme. The batch experiments enabled samples to be taken every minute and revealed that reaction is very rapid. The hydrodynamic characteristics of the two injector configurations used in CBRS construction were studied using Magnetic Resonance Imaging, combined with hydrodynamic calculations. During the optimisation studies, galactooligosaccharides (GOS) were detected as intermediates in the hydrolysis process. GOS are valuable products with potential and existing applications in food manufacture (as nutraceuticals), medicine and drug targeting. The focus of the research was therefore turned to GOS production. A means of controlling reaction to arrest break down of GOS was required. Raising temperature was identified as a possible means of achieving this within a CBRS. Studies were undertaken to optimise the yield of oligosaccharides, culminating in the design, construction and evaluation of a Dithermal Chromatographic Bioreactor-separator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aims of this work have been to identify an enzymatic reaction system suitable to investigate and develop the high-speed centrifuge as a novel reaction system for performing such reactions. The production of galacto-oligosaccharides by the trans-galactosyl activity of the enzyme β-galactosidase on lactose monohydrate was identified as a model enzymatic system to elucidate the principles of this type of process. Galacto-oligosaccharides have attracted considerable commercial interest as food additives which have been shown to be beneficial to the health of the human gastrointestinal tract. The development of a single unit operation capable of controlling the biosynthesis of galacto-oligosaccharides whilst simultaneously separating the enzyme from the reaction products would reduce downstream processing costs. This thesis shows for the first time that by using a combination of (a) immobilised or insolubilised β-galactosidase , (b) a rate-zonal centrifugation technique, and (c) various applied centrifugal fields, that a high-speed centrifuge could be used to control the formation of galacto-oligosaccharides whilst removing the enzyme from the reaction products. By layering a suspension of insolubilised β-galactosidase on top of a lactose monohydrate density gradient and centrifuging, the applied centrifugal fields generated produced sedimentation of the enzyme particles through the substrate. The higher sedimentation rate of the enzyme compared to those of the reaction products allowed for separation to take place. Complete sedimentation, or pelleting of the enzyme permits the possible recovery and re-use. Insolubilisation of the enzyme allowed it to be sedimented through the substrate gradient using much lower applied centrifugal fields than that required to sediment free soluble enzyme and this allowed for less expensive centrifugation equipment to be used. Using free soluble and insolubilised β-galactosidase stirred-batch reactions were performed to investigate the kinetics of lactose monohydrate hydrolysis and galacto-oligosaccharide formation. Based on these results a preliminary mathematical model based on Michaelis-Menten kinetics was produced. It was found that the enzyme insolubilisation process using a chemical cross-linking agent did not affect the process of galacto-oligosaccharide formation. Centrifugation experiments were performed and it was found that by varying the applied centrifugal fields that the yield of galacto-oligosaccharides could be controlled. The higher the applied centrifugal fields the lower the yield of galacto-oligosaccharides. By increasing the applied centrifugal fields the 'contact time' between the sedimenting enzyme and the substrate was reduced, which produced lower yields. A novel technique involving pulsing the insolubilised enzyme through the substrate gradient was developed and this was found to produce higher yields of galacto-oligosaccharide compared to using a single enzyme loading equivalent to the total combined activity of the pulses. Comparison of the galacto-oligosaccharide yields between stirred-batch and centrifugation reactions showed that the applied centrifugal fields did not adversely affect the transgalactosyl activity of the insolubilised enzyme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several fermentation methods for the production of the enzyme dextransucrase have been employed. The theoretical aspects of these fermentation techniques have been given in the early chapters of this thesis together with a brief overview of enzyme biotechnology. A literature survey on cell recycle fermentation has been carried out followed by a survey report on dextransucrase production, purification and the reaction mechanism of dextran biosynthesis. The various experimental apparatus as employed in this research are described in detail. In particular, emphasis has been given to the development of continuous cell recycle fermenters. On the laboratory scale, fed-batch fermentations under anaerobic low agitation conditions resulted in dextransucrase activities of about 450 DSU/cm3 which are much higher than the yields reported in the literature and obtained under aerobic conditions. In conventional continuous culture the dilution rate was varied in the range between 0.375 h-1 to 0.55 h-1. The general pattern observed from the data obtained was that the enzyme activity decreased with increase in dilution rate. In these experiments the maximum value of enzyme activity was ∼74 DSU/cm3. Sparging the fermentation broth with CO2 in continuous culture appears to result in a decrease in enzyme activity. In continuous total cell recycle fermentations high steady state biomass levels were achieved but the enzyme activity was low, in the range 4 - 27 DSU/cm3. This fermentation environment affected the physiology of the microorganism. The behaviour of the cell recycle system employed in this work together with its performance and the factors that affected it are discussed in the relevant chapters. By retaining the whole broth leaving a continuous fermenter for between 1.5 - 4 h under controlled conditions, the enzyme activity was enhanced with a certain treatment from 86 DSU/cm3 to 180 DSU/cm3 which represents a 106% increase over the enzyme activity achieved by a steady-state conventional chemostat. A novel process for dextran production has been proposed based on the findings of this latter part of the experimental work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clinical dextran is used as a blood volume expander. The British Pharmacopeia (BP) specification for this product requires the amount of dextran below 12,000 MW and above 98,000 MW to be strictly controlled. Dextran is presently fractionated industrially using ethanol precipitation. The aim of this work was to develop an ultrafiltration system which could replace the present industrial process. Initially these molecular weight (MW) bands were removed using batch ultrafiltration. A large number of membranes were tested. The correct BP specification could be achieved using these membranes but there was a significant loss of saleable material. To overcome this problem a four stage ultrafiltration cascade (UFC) was used. This work is the first known example of a UFC being used to remove both the high and low MW dextran. To remove the high MW material it was necessary to remove 90% of the MW distribution and retain the remaining 10%. The UFC significantly reduced the amount of dialysate required. To achieve the correct specification below 12,000 MW, the UFC required only 2.5 - 3.0 diavolumes while the batch system required 6 - 7. The UFC also improved the efficiency of the fractionation process. The UFC could retain up to 96% of the high MW material while the batch system could only retain 82.5% using the same number of diavolumes. On average the UFC efficiency was approximately 10% better than the equivalent batch system. The UFC was found to be more predictable than the industrial process and the specification of the final product was easier to control. The UFC can be used to improve the fractionation of any polymer and also has several other potential uses including enzyme purification. A dextransucrase bioreactor was also developed. This preliminary investigation highlighted the problems involved with the development of a successful bioreactor for this enzyme system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work described in this thesis focuses on the use of a design-of-experiments approach in a multi-well mini-bioreactor to enable the rapid establishments of high yielding production phase conditions in yeast, which is an increasingly popular host system in both academic and industrial laboratories. Using green fluorescent protein secreted from the yeast, Pichia pastoris, a scalable predictive model of protein yield per cell was derived from 13 sets of conditions each with three factors (temperature, pH and dissolved oxygen) at 3 levels and was directly transferable to a 7 L bioreactor. This was in clear contrast to the situation in shake flasks, where the process parameters cannot be tightly controlled. By further optimisating both the accumulation of cell density in batch and improving the fed-batch induction regime, additional yield improvement was found to be additive to the per cell yield of the model. A separate study also demonstrated that improving biomass improved product yield in a second yeast species, Saccharomyces cerevisiae. Investigations of cell wall hydrophobicity in high cell density P. pastoris cultures indicated that cell wall hydrophobin (protein) compositional changes with growth phase becoming more hydrophobic in log growth than in lag or stationary phases. This is possibly due to an increased occurrence of proteins associated with cell division. Finally, the modelling approach was validated in mammalian cells, showing its flexibility and robustness. In summary, the strategy presented in this thesis has the benefit of reducing process development time in recombinant protein production, directly from bench to bioreactor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of agricultural and horticultural products requires the use of nitrogenous fertiliser that can cause pollution of surface and ground water and has a large carbon footprint as it is mainly produced from fossil fuels. The overall objective of this research project was to investigate fast pyrolysis and in-situ nitrogenolysis of biomass and biogenic residues as an alternative route to produce a sustainable solid slow release fertiliser mitigating the above stated problems. A variety of biomasses and biogenic residues were characterized by proximate analysis, ultimate analysis, thermogravimetric analysis (TGA) and Pyrolysis – Gas chromatography – Mass Spectroscopy (Py–GC–MS) for their potential use as feedstocks using beech wood as a reference material. Beech wood was virtually nitrogen free and therefore suitable as a reference material as added nitrogen can be identified as such while Dried Distillers Grains with Solubles (DDGS) and rape meal had a nitrogen content between 5.5wt.% and 6.1wt.% qualifying them as high nitrogen feedstocks. Fast pyrolysis and in-situ nitrogenolysis experiments were carried out in a continuously fed 1kg/h bubbling fluidized bed reactor at around 500°C quenching the pyrolysis vapours with isoparaffin. In-situ nitrogenolysis experiments were performed by adding ammonia gas to the fast pyrolysis reactor at nominal nitrogen addition rates between 5wt.%C and 20wt.%C based on the dry feedstock’s carbon content basis. Mass balances were established for the processing experiments. The fast pyrolysis and in-situ nitrogenolysis products were characterized by proximate analysis, ultimate analysis and GC– MS. High liquid yields and good mass balance closures of over 92% were obtained. The most suitable nitrogen addition rate for the in-situ nitrogenolysis experiments was determined to be 12wt.%C on dry feedstock carbon content basis. However, only a few nitrogen compounds that were formed during in-situ nitrogenolysis could be identified by GC–MS. A batch reactor process was developed to thermally solidify the fast pyrolysis and in-situ nitrogenolysis liquids of beech wood and Barley DDGS producing a brittle solid product. This was obtained at 150°C with an addition of 2.5wt% char (as catalyst) after a processing time of 1h. The batch reactor was also used for modifying and solidifying fast pyrolysis liquids derived from beech wood by adding urea or ammonium phosphate as post processing nitrogenolysis. The results showed that this type of combined approach was not suitable to produce a slow release fertiliser, because the solid product contained up to 65wt.% of highly water soluble nitrogen compounds that would be released instantly by rain. To complement the processing experiments a comparative study via Py–GC–MS with inert and reactive gas was performed with cellulose, hemicellulose, lignin and beech wood. This revealed that the presence of ammonia gas during analytical pyrolysis did not appear to have any direct impact on the decomposition products of the tested materials. The chromatograms obtained showed almost no differences between inert and ammonia gas experiments indicating that the reaction between ammonia and pyrolysis vapours does not occur instantly. A comparative study via Fourier Transformed Infrared Spectroscopy of solidified fast pyrolysis and in-situ nitrogenolysis products showed that there were some alterations in the spectra obtained. A shift in frequencies indicating C=O stretches typically related to the presence of carboxylic acids to C=O stretches related to amides was observed and no double or triple bonded nitrogen was detected. This indicates that organic acids reacted with ammonia and that no potentially harmful or non-biodegradable triple bonded nitrogen compounds were formed. The impact of solid slow release fertiliser (SRF) derived from pyrolysis and in-situ nitrogenolysis products from beech wood and Barley DDGS on microbial life in soils and plant growth was tested in cooperation with Rothamsted Research. The microbial incubation tests indicated that microbes can thrive on the SRFs produced, although some microbial species seem to have a reduced activity at very high concentrations of beech wood and Barley DDGS derived SRF. The plant tests (pot trials) showed that the application of SRF derived from beech wood and barley DDGS had no negative impact on germination or plant growth of rye grass. The fertilizing effect was proven by the dry matter yields in three harvests after 47 days, 89 days and 131 days. The findings of this research indicate that in general a slow release fertiliser can be produced from biomass and biogenic residues by in-situ nitrogenolysis. Nevertheless the findings also show that additional research is necessary to identify which compounds are formed during this process.