4 resultados para basal-like tumors

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lipopolysaccharide (LPS), which generally activates Toll-like receptor 4 (TLR4), is expressed on commensal colonic bacteria. In a number of tissues, LPS can act directly on epithelial cells to increase paracellular permeability. Such an effect in the colon would have an important impact on the understanding of normal homeostasis and of pathology. Our aim was to use a novel primary culture of colonic epithelial cells grown on Transwells to investigate whether LPS, or Pam(3)CSK( 4), an activator of TLR2, affected paracellular permeability. Consequently, [(14)C]-mannitol transfer and transepithelial electrical resistance (TEER) were measured. The preparation consisted primarily of cytokeratin-18 positive epithelial cells that produced superoxide, stained for mucus with periodic acid-Schiff reagent, exhibited alkaline phosphatase activity and expressed TLR2 and TLR4. Tight junctions and desmosomes were visible by transmission electron microscopy. Basally, but not apically, applied LPS from Escherichia coli increased the permeability to mannitol and to a 10-kDa dextran, and reduced TEER. The LPS from Helicobacter pylori increased paracellular permeability of gastric cells when applied either apically or basally, in contrast to colon cells, where this LPS was active only from the basal aspect. A pan-caspase inhibitor prevented the increase in caspase activity caused by basal E. coli LPS, and reduced the effects of LPS on paracellular permeability. Synthetic Pam(3)CSK(4) in the basal compartment prevented all effects of basal E. coli LPS. In conclusion, LPS applied to the base of the colonic epithelial cells increased paracellular permeability by a mechanism involving caspase activation, suggesting a process by which perturbation of the gut barrier could be exacerbated. Moreover, activation of TLR2 ameliorated such effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. During osmotic swelling, cultured osteoblastic cells (ROS 17/2.8) exhibited activation of large amplitude Cl- currents in the whole-cell configuration of the patch-clamp technique. Effects of hypotonic shock on cell volume and membrane conductance were rapidly reversed on return to isotonic conditions. 2. Voltage command pulses in the range -80 to +50 mV produce instantaneous activation of Cl- currents. At potentials more positive than +50 mV the current exhibited time-dependent inactivation. The instantaneous current-voltage relationship was outwardly rectifying. 3. The anion permeability sequence of the induced current was SCN- (2.2) > I- (1.9) > Br- (1.5) > Cl- (1.0) > F- (0.8) > gluconate- (0.2). This corresponds to Eisenman's sequence I. 4. The volume-sensitive Cl- current was effectively inhibited by the Cl- channel blockers 4,4'-diisothiocyanatostilbene-2,2-disulphonic acid (DIDS) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB). Outward currents were more effectively suppressed by DIDS than inward currents. The concentrations for 50% inhibition (IC50) of outward and inward currents were 81 and 298 μM, respectively. NPPB was equally effective at inhibiting outward and inward currents (IC50 of 64 μM). The current was relatively insensitive to diphenylamine-2-carboxylate (DPC), 500 μM producing only 22.5 ± 4.0% inhibition. 5. Inhibitors of protein kinase A (H-89, 1 μM) and tyrosine kinase (tyrphostin A25, 200 μM) were without effect upon activation of Cl- currents in response to hypotonic shock. Under isotonic conditions, elevation of intracellular Ca2+ by ionomycin (1 μM) or activation of protein kinase C by 12-O-tetradecanoylphorbol 13-acetate (TPA, 0.1 μM) failed to evoke increases in basal Cl- conductance levels. 6. It is concluded that an outwardly rectifying Cl- conductance is activated upon osmotic swelling and may be involved in cell volume regulation of ROS 17/2.8 cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background—Alterations in circulating levels of pro- and antiangiogenic factors have been associated with adverse pregnancy outcomes. Heparin is routinely administered to pregnant women, but without clear knowledge of its impact on these factors. Methods and Results—We conducted a longitudinal study of 42 pregnant women. Twenty-one women received prophylactic heparin anticoagulation, and 21 healthy pregnant women served as controls. Compared with gestational age-matched controls, heparin treatment was associated with increased circulating levels of soluble fms-like tyrosine kinase-1 (sFlt-1) in the third trimester (P<0.05), in the absence of preeclampsia, placental abruption, or fetal growth restriction. Heparin had no effect on circulating levels of vascular endothelial growth factor, placenta growth factor, or soluble endoglin as assessed by ELISA. In vitro, low-molecular weight and unfractionated heparins stimulated sFlt-1 release from placental villous explants, in a dose- and time-dependent manner. This effect was not due to placental apoptosis, necrosis, alteration in protein secretion, or increased transcription. Western blot analysis demonstrated that heparin induced shedding of the N-terminus of Flt-1 both in vivo and in vitro as indicated by a predominant band of 100–112 kDa. By using an in vitro angiogenesis assay, we demonstrated that serum of heparin-treated cases inhibited both basal and vascular endothelial growth factor-induced capillary-like tube formation. Conclusions—Heparin likely increases the maternal sFlt-1 through shedding of the extracellular domain of Flt-1 receptor. Our results imply that upregulation of circulating sFlt-1 immunoreactivity in pregnancy is not always associated with adverse outcomes, and that heparin's protective effects, if any, cannot be explained by promotion of angiogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-steroidal anti-inflammatory drugs (NSAIDs) induce apoptosis in gastrointestinal cancer cell lines. Similar actions on normal gastric epithelial cells could contribute to NSAID gastropathy. The present work therefore compared the actions of diclofenac, ibuprofen, indomethacin, and the cyclo-oxygenase-2 selective inhibitor, NS-398, on a primary culture of guinea-pig gastric mucous epithelial cells. Cell number was assessed by staining with crystal violet. Apoptotic activity was determined by condensation and fragmentation of nuclei and by assay of caspase-3-like activity. Necrosis was evaluated from release of cellular enzymes. Ibuprofen (250 μM for 24 h) promoted cell loss, and apoptosis, under both basal conditions and when apoptosis was increased by 25 μM N-Hexanoyl-D-sphingosine (C6-ceramide). Diclofenac (250 μM for 24 h) reduced the proportion of apoptotic nuclei from 5.2 to 2.1%, and caused inhibition of caspase-3-like activity, without causing necrosis under basal conditions. No such reduction in apoptotic activity was evident in the presence of 25 μM C6-ceramide. The inhibitory effect of diclofenac on basal caspase-3-like activity was also exhibited by the structurally similar mefenamic and flufenamic acids (1–250 μM), but not by niflumic acid. Inhibition of superoxide production by the cells increased caspase-3-like activity, but the inhibitory action of diclofenac on caspase activity remained. Diclofenac did not affect superoxide production. Diclofenac inhibited caspase-3-like activity in cell homogenates and also inhibited human recombinant caspase-3. In conclusion, NSAIDs vary in their effect on apoptotic activity in a primary culture of guinea-pig gastric mucous epithelial cells, and the inhibitory effect of diclofenac on basal apoptosis could involve an action on caspase activity.