8 resultados para barycentric weights
em Aston University Research Archive
Resumo:
This paper contributes to extend the minimax disparity to determine the ordered weighted averaging (OWA) model based on linear programming. It introduces the minimax disparity approach between any distinct pairs of the weights and uses the duality of linear programming to prove the feasibility of the extended OWA operator weights model. The paper finishes with an open problem. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
This paper re-assesses three independently developed approaches that are aimed at solving the problem of zero-weights or non-zero slacks in Data Envelopment Analysis (DEA). The methods are weights restricted, non-radial and extended facet DEA models. Weights restricted DEA models are dual to envelopment DEA models with restrictions on the dual variables (DEA weights) aimed at avoiding zero values for those weights; non-radial DEA models are envelopment models which avoid non-zero slacks in the input-output constraints. Finally, extended facet DEA models recognize that only projections on facets of full dimension correspond to well defined rates of substitution/transformation between all inputs/outputs which in turn correspond to non-zero weights in the multiplier version of the DEA model. We demonstrate how these methods are equivalent, not only in their aim but also in the solutions they yield. In addition, we show that the aforementioned methods modify the production frontier by extending existing facets or creating unobserved facets. Further we propose a new approach that uses weight restrictions to extend existing facets. This approach has some advantages in computational terms, because extended facet models normally make use of mixed integer programming models, which are computationally demanding.
Resumo:
The concept of ordered weighted averaging (OWA) operator weights arises in uncertain decision making problems, however some weights may have a specific relationship with other. This information about the weights can be obtained from decision makers (DMs). This paper intends to introduce a theory of weight restrictions into the existing OWA operator weight models. Based on the DMs' value judgment the obtained OWA operator weights could be more realistic.
Resumo:
Hierarchical knowledge structures are frequently used within clinical decision support systems as part of the model for generating intelligent advice. The nodes in the hierarchy inevitably have varying influence on the decisionmaking processes, which needs to be reflected by parameters. If the model has been elicited from human experts, it is not feasible to ask them to estimate the parameters because there will be so many in even moderately-sized structures. This paper describes how the parameters could be obtained from data instead, using only a small number of cases. The original method [1] is applied to a particular web-based clinical decision support system called GRiST, which uses its hierarchical knowledge to quantify the risks associated with mental-health problems. The knowledge was elicited from multidisciplinary mental-health practitioners but the tree has several thousand nodes, all requiring an estimation of their relative influence on the assessment process. The method described in the paper shows how they can be obtained from about 200 cases instead. It greatly reduces the experts’ elicitation tasks and has the potential for being generalised to similar knowledge-engineering domains where relative weightings of node siblings are part of the parameter space.
Resumo:
The main advantage of Data Envelopment Analysis (DEA) is that it does not require any priori weights for inputs and outputs and allows individual DMUs to evaluate their efficiencies with the input and output weights that are only most favorable weights for calculating their efficiency. It can be argued that if DMUs are experiencing similar circumstances, then the pricing of inputs and outputs should apply uniformly across all DMUs. That is using of different weights for DMUs makes their efficiencies unable to be compared and not possible to rank them on the same basis. This is a significant drawback of DEA; however literature observed many solutions including the use of common set of weights (CSW). Besides, the conventional DEA methods require accurate measurement of both the inputs and outputs; however, crisp input and output data may not relevant be available in real world applications. This paper develops a new model for the calculation of CSW in fuzzy environments using fuzzy DEA. Further, a numerical example is used to show the validity and efficacy of the proposed model and to compare the results with previous models available in the literature.
Resumo:
Divisia money is a monetary aggregate that gives each component asset an assigned weight. We use an evolutionary neural network to calculate new Divisia weights for each component utilising the Bank of England monetary data for the U.K. We propose a new monetary aggregate using our newly derived weights to carry out quantitative inflation prediction. The results show that this new monetary aggregate has better inflation forecasting performance than the traditionally constructed Bank of England Divisa money. This result is important for monetary policymakers, as improved construction of monetary aggregates will yield tighter relationships between key macroeconomic variables and ultimately, greater macroeconomic control. Research is ongoing to establish the extent of the increased information content and parameter stability of this new monetary aggregate.
Resumo:
Determining the Ordered Weighted Averaging (OWA) operator weights is important in decision making applications. Several approaches have been proposed in the literature to obtain the associated weights. This paper provides an alternative disparity model to identify the OWA operator weights. The proposed mathematical model extends the existing disparity approaches by minimizing the sum of the deviation between two distinct OWA weights. The proposed disparity model can be used for a preference ranking aggregation. A numerical example in preference ranking and an application in search engines prove the usefulness of the generated OWA weights.
Resumo:
This paper seeks to advance the theory and practice of the dynamics of complex networks in relation to direct and indirect citations. It applies social network analysis (SNA) and the ordered weighted averaging operator (OWA) to study a patent citations network. So far the SNA studies investigating long chains of patents citations have rarely been undertaken and the importance of a node in a network has been associated mostly with its number of direct ties. In this research OWA is used to analyse complex networks, assess the role of indirect ties, and provide guidance to reduce complexity for decision makers and analysts. An empirical example of a set of European patents published in 2000 in the renewable energy industry is provided to show the usefulness of the proposed approach for the preference ranking of patent citations.