3 resultados para banana
em Aston University Research Archive
Resumo:
Plantain (Banana-Musa AAB) is a widely growing but commercially underexploited tropical fruit. This study demonstrates the processing of plantain to flour and extends its use and convenience as a constituent of bread, cake and biscuit. Plantain was peeled, dried and milled to produce flour. Proximate analysis was carried out on the flour to determine the food composition. Drying at temperatures below 70ºC produced light coloured plantain flour. Experiments were carried out to determine the mechanism of drying, the heat and mass transfer coefficients, effect of air velocity, temperature and cube size on the rate of drying of plantain cubes. The drying was diffusion controlled. Pilot scale drying of plantain cubes in a cabinet dryer showed no significant increase of drying rate above 70ºC. In the temperature range found most suitable for plantain drying (ie 60 to 70ºC) the total drying time was adequately predicted using a modified equation based on Fick's Law provided the cube temperature was taken to be about 5ºC below the actual drying air temperature. Studies of baking properties of plantain flour revealed that plantain flour can be substituted for strong wheat flour up to 15% for bread making and up to 50% for madeira cake. A shortcake biscuit was produced using 100% plantain flour and test-marketed. Detailed economic studies showed that the production of plantain fruit and its processing into flour would be economically viable in Nigeria when the flour is sold at the wholesale price of NO.65 per kilogram provided a minimum sale of 25% plantain suckers. There is need for government subsidy if plantain flour is to compete with imported wheat flour. The broader economic benefits accruing from the processing of plantain fruit into flour and its use in bakery products include employment opportunity, savings in foreign exchange and stimulus to home agriculture.
Resumo:
Sustainable development requires combining economic viability with energy and environment conservation and ensuring social benefits. It is conceptualized that for designing a micro industry for sustainable rural industrialization, all these aspects should be integrated right up front. The concept includes; (a) utilization of local produce for value addition in a cluster of villages and enhancing income of the target population; (b) use of renewable energy and total utilization of energy generated by co and trigeneration (combining electric power production with heat utilization for heating and cooling); (c) conservation of water and complete recycling of effluents; (d) total utilization of all wastes for achieving closure towards a zero waste system. Enhanced economic viability and sustainability is achieved by integration of appropriate technologies into the industrial complex. To prove the concept, a model Micro Industrial Complex (MIC) has been set up in a semi arid desert region in Rajasthan, India at village Malunga in Jodhpur district. A biomass powered boiler and steam turbine system is used to generate 100-200 KVA of electric power and high energy steam for heating and cooling processes downstream. The unique feature of the equipment is a 100-150 kW back-pressure steam turbine, utilizing 3-4 tph (tonnes per hour) steam, developed by M/s IB Turbo. The biomass boiler raises steam at about 20 barg 3 tph, which is passed through a turbine to yield about 150 kW of electrical power. The steam let out at a back pressure of 1-3 barg has high exergy and this is passed on as thermal energy (about 2 MW), for use in various applications depending on the local produce and resources. The biomass fuel requirement for the boiler is 0.5-0.75 tph depending on its calorific value. In the current model, the electricity produced is used for running an oil expeller to extract castor oil and the castor cake is used as fuel in the boiler. The steam is used in a Multi Effect Distillation (MED) unit for drinking water production and in a Vapour Absorption Machine (VAM) for cooling, for banana ripening application. Additional steam is available for extraction of herbs such as mint and processing local vegetables. In this paper, we discuss the financial and economic viability of the system and show how the energy, water and materials are completely recycled and how the benefits are directed to the weaker sections of the community.