12 resultados para b-hCG regression curve
em Aston University Research Archive
Resumo:
Non-linear relationships are common in microbiological research and often necessitate the use of the statistical techniques of non-linear regression or curve fitting. In some circumstances, the investigator may wish to fit an exponential model to the data, i.e., to test the hypothesis that a quantity Y either increases or decays exponentially with increasing X. This type of model is straight forward to fit as taking logarithms of the Y variable linearises the relationship which can then be treated by the methods of linear regression.
Resumo:
In some circumstances, there may be no scientific model of the relationship between X and Y that can be specified in advance and indeed the objective of the investigation may be to provide a ‘curve of best fit’ for predictive purposes. In such an example, the fitting of successive polynomials may be the best approach. There are various strategies to decide on the polynomial of best fit depending on the objectives of the investigation.
Resumo:
The growth curves of four common species of crustose lichens, viz., Buellia aethalea (Ach.) Th. Fr., Lecidea tumida Massai., Rhizocarpon geographicum (L.) DC., and Rhizocarpon reductum Th. Fr. were studied at a site in south Gwynedd, north Wales, UK. Radial growth rates (RGR, mm 1.5 yr-1) were greatest in thalli of R. reductum and least in R. geographicum. Variation in RGR between thalli was greater in B. aethalea and L. tumida than in the species of Rhizocarpon. The relationship between growth rate and thallus diameter was not asymptotic; RGR increasing in smaller thalli to a maximum and then declining in larger diameter thalli. A polynomial curve was fitted to the data; the growth curves being fitted best by a second-order (quadratic) curve, the best fit to this model being shown by B. aethalea. A significant linear regression with a negative slope was also fitted to the growth of the larger thalli of each species. The data suggest that the growth curves of the four crustose lichens differ significantly from the asymptotic curves of foliose lichen species. A phase of declining RGR in larger thalli appears to be characteristic of crustose lichens and is consistent with data from lichenometric studies.
Resumo:
A method of determining the spatial pattern of any histological feature in sections of brain tissue which can be measured quantitatively is described and compared with a previously described method. A measurement of a histological feature such as density, area, amount or load is obtained for a series of contiguous sample fields. The regression coefficient (β) is calculated from the measurements taken in pairs, first in pairs of adjacent samples and then in pairs of samples taken at increasing degrees of separation between them, i.e. separated by 2, 3, 4,..., n units. A plot of β versus the degree of separation between the pairs of sample fields reveals whether the histological feature is distributed randomly, uniformly or in clusters. If the feature is clustered, the analysis determines whether the clusters are randomly or regularly distributed, the mean size of the clusters and the spacing of the clusters. The method is simple to apply and interpret and is illustrated using simulated data and studies of the spatial patterns of blood vessels in the cerebral cortex of normal brain, the degree of vacuolation of the cortex in patients with Creutzfeldt-Jacob disease (CJD) and the characteristic lesions present in Alzheimer's disease (AD). Copyright (C) 2000 Elsevier Science B.V.
Resumo:
Data on the growth curve of the lichen Rhizocarpon geographicum were obtained by measuring the radial growth rates (mm per 1.5 years) of 39 thalli from 2 to 65 mm in diameter growing in the same environment. An Aplin and Hill plot (r2 – r1 against ln r2 – ln r1) of the data and regression analyses suggested an initial phase of growth (up to a diameter of about 7 mm) in which the relative growth rate increased rapidly. This was followed by a phase in which the relative growth rate fell but the radial growth rate continued to rise (7 to 20 mm in diameter). Radial growth was then relatively constant until about 45 mm diameter and then declined. The Aplin and Hill model did not fit the data as a whole but may apply for a transient period in thalli between about 7 and 16 mm in diameter. The curve shows some similarities to that suggested by lichenometric studies but differs in showing a less steep decline in growth rate after the ‘great’ period.
Resumo:
1. Fitting a linear regression to data provides much more information about the relationship between two variables than a simple correlation test. A goodness of fit test of the line should always be carried out. Hence, r squared estimates the strength of the relationship between Y and X, ANOVA whether a statistically significant line is present, and the ‘t’ test whether the slope of the line is significantly different from zero. 2. Always check whether the data collected fit the assumptions for regression analysis and, if not, whether a transformation of the Y and/or X variables is necessary. 3. If the regression line is to be used for prediction, it is important to determine whether the prediction involves an individual y value or a mean. Care should be taken if predictions are made close to the extremities of the data and are subject to considerable error if x falls beyond the range of the data. Multiple predictions require correction of the P values. 3. If several individual regression lines have been calculated from a number of similar sets of data, consider whether they should be combined to form a single regression line. 4. If the data exhibit a degree of curvature, then fitting a higher-order polynomial curve may provide a better fit than a straight line. In this case, a test of whether the data depart significantly from a linear regression should be carried out.
Resumo:
1. The techniques associated with regression, whether linear or non-linear, are some of the most useful statistical procedures that can be applied in clinical studies in optometry. 2. In some cases, there may be no scientific model of the relationship between X and Y that can be specified in advance and the objective may be to provide a ‘curve of best fit’ for predictive purposes. In such cases, the fitting of a general polynomial type curve may be the best approach. 3. An investigator may have a specific model in mind that relates Y to X and the data may provide a test of this hypothesis. Some of these curves can be reduced to a linear regression by transformation, e.g., the exponential and negative exponential decay curves. 4. In some circumstances, e.g., the asymptotic curve or logistic growth law, a more complex process of curve fitting involving non-linear estimation will be required.
Resumo:
We examine the empirical evidence for an environmental Kuznets curve using a semiparametric smooth coefficient regression model that allows us to incorporate flexibility in the parameter estimates, while maintaining the basic econometric structure that is typically used to estimate the pollution-income relationship. This allows us to assess the sensitivity to parameter heterogeneity of typical parametric models used to estimate the relationship between pollution and income, as well as identify why the results from such models are seldom found to be robust. Our results confirm that the resulting relationship between pollution and income is fragile; we show that the estimated pollution-income relationship depends substantially on the heterogeneity of the slope coefficients and the parameter values at which the relationship is evaluated. Different sets of parameters obtained from the semiparametric model give rise to many different shapes for the pollution-income relationship that are commonly found in the literature.
Resumo:
Objective: To assess the accuracy and acceptability of polymerase chain reaction (PCR) and optical immunoassay (OIA) tests for the detection of maternal group B streptococcus (GBS) colonisation during labour, comparing their performance with the current UK policy of risk factor-based screening. Design Diagnostic test accuracy study. Setting and population Fourteen hundred women in labour at two large UK maternity units provided vaginal and rectal swabs for testing. Methods The PCR and OIA index tests were compared with the reference standard of selective enriched culture, assessed blind to index tests. Factors influencing neonatal GBS colonisation were assessed using multiple logistic regression, adjusting for antibiotic use. The acceptability of testing to participants was evaluated through a structured questionnaire administered after delivery. Main outcome measures The sensitivity and specificity of PCR, OIA and risk factor-based screening. Results Maternal GBS colonisation was 21% (19-24%) by combined vaginal and rectal swab enriched culture. PCR test of either vaginal or rectal swabs was more sensitive (84% [79-88%] versus 72% [65-77%]) and specific (87% [85-89%] versus 57% [53-60%]) than OIA (P <0.001), and far more sensitive (84 versus 30% [25-35%]) and specific (87 versus 80% [77-82%]) than risk factor-based screening (P <0.001). Maternal antibiotics (odds ratio, 0.22 [0.07-0.62]; P = 0.004) and a positive PCR test (odds ratio, 29.4 [15.8-54.8]; P <0.001) were strongly related to neonatal GBS colonisation, whereas risk factors were not (odds ratio, 1.44 [0.80-2.62]; P = 0.2). Conclusion Intrapartum PCR screening is a more accurate predictor of maternal and neonatal GBS colonisation than is OIA or risk factor-based screening, and is acceptable to women. © RCOG 2010 BJOG An International Journal of Obstetrics and Gynaecology.
Resumo:
Purpose: To determine whether curve-fitting analysis of the ranked segment distributions of topographic optic nerve head (ONH) parameters, derived using the Heidelberg Retina Tomograph (HRT), provide a more effective statistical descriptor to differentiate the normal from the glaucomatous ONH. Methods: The sample comprised of 22 normal control subjects (mean age 66.9 years; S.D. 7.8) and 22 glaucoma patients (mean age 72.1 years; S.D. 6.9) confirmed by reproducible visual field defects on the Humphrey Field Analyser. Three 10°-images of the ONH were obtained using the HRT. The mean topography image was determined and the HRT software was used to calculate the rim volume, rim area to disc area ratio, normalised rim area to disc area ratio and retinal nerve fibre cross-sectional area for each patient at 10°-sectoral intervals. The values were ranked in descending order, and each ranked-segment curve of ordered values was fitted using the least squares method. Results: There was no difference in disc area between the groups. The group mean cup-disc area ratio was significantly lower in the normal group (0.204 ± 0.16) compared with the glaucoma group (0.533 ± 0.083) (p < 0.001). The visual field indices, mean deviation and corrected pattern S.D., were significantly greater (p < 0.001) in the glaucoma group (-9.09 dB ± 3.3 and 7.91 ± 3.4, respectively) compared with the normal group (-0.15 dB ± 0.9 and 0.95 dB ± 0.8, respectively). Univariate linear regression provided the best overall fit to the ranked segment data. The equation parameters of the regression line manually applied to the normalised rim area-disc area and the rim area-disc area ratio data, correctly classified 100% of normal subjects and glaucoma patients. In this study sample, the regression analysis of ranked segment parameters method was more effective than conventional ranked segment analysis, in which glaucoma patients were misclassified in approximately 50% of cases. Further investigation in larger samples will enable the calculation of confidence intervals for normality. These reference standards will then need to be investigated for an independent sample to fully validate the technique. Conclusions: Using a curve-fitting approach to fit ranked segment curves retains information relating to the topographic nature of neural loss. Such methodology appears to overcome some of the deficiencies of conventional ranked segment analysis, and subject to validation in larger scale studies, may potentially be of clinical utility for detecting and monitoring glaucomatous damage. © 2007 The College of Optometrists.
Resumo:
Abstract A new LIBS quantitative analysis method based on analytical line adaptive selection and Relevance Vector Machine (RVM) regression model is proposed. First, a scheme of adaptively selecting analytical line is put forward in order to overcome the drawback of high dependency on a priori knowledge. The candidate analytical lines are automatically selected based on the built-in characteristics of spectral lines, such as spectral intensity, wavelength and width at half height. The analytical lines which will be used as input variables of regression model are determined adaptively according to the samples for both training and testing. Second, an LIBS quantitative analysis method based on RVM is presented. The intensities of analytical lines and the elemental concentrations of certified standard samples are used to train the RVM regression model. The predicted elemental concentration analysis results will be given with a form of confidence interval of probabilistic distribution, which is helpful for evaluating the uncertainness contained in the measured spectra. Chromium concentration analysis experiments of 23 certified standard high-alloy steel samples have been carried out. The multiple correlation coefficient of the prediction was up to 98.85%, and the average relative error of the prediction was 4.01%. The experiment results showed that the proposed LIBS quantitative analysis method achieved better prediction accuracy and better modeling robustness compared with the methods based on partial least squares regression, artificial neural network and standard support vector machine.