17 resultados para axial gauges
em Aston University Research Archive
Resumo:
Purpose. To use anterior segment optical coherence tomography (AS-OCT) to analyze ciliary muscle morphology and changes with accommodation and axial ametropia. Methods. Fifty prepresbyopic volunteers, aged 19 to 34 years were recruited. High-resolution images were acquired of nasal and temporal ciliary muscles in the relaxed state and at stimulus vergence levels of -4 and -8 D. Objective accommodative responses and axial lengths were also recorded. Two-way, mixed-factor analyses of variance (ANOVAs) were used to assess the changes in ciliary muscle parameters with accommodation and determine whether these changes are dependent on the nasal–temporal aspect or axial length, whereas linear regression analysis was used to analyze the relationship between axial length and ciliary muscle length. Results. The ciliary muscle was longer (r = 0.34, P = 0.02), but not significantly thicker (F = 2.84, P = 0.06), in eyes with greater axial length. With accommodation, the ciliary muscle showed a contractile shortening (F = 42.9. P < 0.001), particularly anteriorly (F = 177.2, P < 0.001), and a thickening of the anterior portion (F= 46.2, P < 0.001). The ciliary muscle was thicker (F = 17.8, P < 0.001) and showed a greater contractile response on the temporal side. Conclusions. The accommodative changes observed support an anterior, as well as centripetal, contractile shift of ciliary muscle mass.
Resumo:
Measurements (autokeratometry, A-scan ultrasonography and video ophthalmophakometry) of ocular surface radii, axial separations and alignment were made in the horizontal meridian of nine emmetropes (aged 20-38 years) with relaxed (cycloplegia) and active accommodation (mean ± 95% confidence interval: 3.7 ± 1.1 D). The anterior chamber depth (-1.5 ± 0.3 D) and both crystalline lens surfaces (front 3.1 ± 0.8 D; rear 2.1 ± 0.6 D) contributed to dioptric vergence changes that accompany accommodation. Accommodation did not alter ocular surface alignment. Ocular misalignment in relaxed eyes is mainly because of eye rotation (5.7 ± 1.6° temporally) with small amounts of lens tilt (0.2 ± 0.8° temporally) and decentration (0.1 ± 0.1 mm nasally) but these results must be viewed with caution as we did not account for corneal asymmetry. Comparison of calculated and empirically derived coefficients (upon which ocular surface alignment calculations depend) revealed that negligible inherent errors arose from neglect of ocular surface asphericity, lens gradient refractive index properties, surface astigmatism, effects of pupil size and centration, assumed eye rotation axis position and use of linear equations for analysing Purkinje image shifts. © 2004 The College of Optometrists.
Resumo:
Molecular dynamics simulations were carried out for Si/Ge axial nanowire heterostructures using modified effective atom method (MEAM) potentials. A Si–Ge MEAM interatomic cross potential was developed based on available experimental data and was used for these studies. The atomic distortions and strain distributions near the Si/Ge interfaces are predicted for nanowires with their axes oriented along the [111] direction. The cases of 10 and 25 nm diameter Si/Ge biwires and of 25 nm diameter Si/Ge/Si axial heterostructures with the Ge disk 1 nm thick were studied. Substantial distortions in the height of the atoms adjacent to the interface were found for the biwires but not for the Ge disks. Strains as high as 3.5% were found for the Ge disk and values of 2%–2.5% were found at the Si and Ge interfacial layers in the biwires. Deformation potential theory was used to estimate the influence of the strains on the band gap, and reductions in band gap to as small as 40% of bulk values are predicted for the Ge disks. The localized regions of increased strain and resulting energy minima were also found within the Si/Ge biwire interfaces with the larger effects on the Ge side of the interface. The regions of strain maxima near and within the interfaces are anticipated to be useful for tailoring band gaps and producing quantum confinement of carriers. These results suggest that nanowire heterostructures provide greater design flexibility in band structure modification than is possible with planar layer growth.
Resumo:
Despite numerous investigations, the aetiology and mechanism of accommodation and presbyopia remains equivocal. Using Gaussian first-order ray tracing calculations, we examine the contribution that ocular axial distances make to the accommodation response. Further, the influence of age and ametropia are also considered. The data show that all changes in axial distances during accommodation reduce the accommodation response, with the reduction in anterior chamber depth contributing most to this overall attenuation. Although the total power loss due to the changes in axial distances remained constant with increasing age, hyperopes exhibited less accommodation than myopes. The study, therefore, enhances our understanding of biometric accommodative changes and demonstrates the utility of vergence analysis in the assessment of accommodation.
Resumo:
The fluids used in hydraulic systems inevitably contain large numbers of small, solid particles, a phenomenon known as 'fluid contamination'. Particles enter a hydraulic system from the environment, and are generated within it by processes of wear. At the same time, particles are removed from the system fluid by sedimentation and in hydraulic filters. This thesis considers the problems caused by fluid contamination, as they affect a manufacturer of axial piston pumps. The specific project aim was to investigate methods of predicting or determining the effects of fluid contamination on this type of pump. The thesis starts with a theoretical analysis of the contaminated lubrication of a slipper-pad bearing. Statistical methods are used to develop a model of the blocking, by particles, of the control capillaries used in such bearings. The results obtained are compared to published, experimental data. Poor correlation between theory and practice suggests that more research is required in this area before such theoretical analysis can be used in industry. Accelerated wear tests have been developed in the U.S.A. in an attempt to predict pump life when operating on contaminated fluids. An analysis of such tests shows that reliability data can only be obtained from extensive test programmes. The value of contamination testing is suggested to be in determining failure modes, and in identifying those pump components which are susceptible to the effects of contamination. A suitable test is described, and the results of a series of tests on axial piston pumps are presented and discussed. The thesis concludes that pump reliability data can only be obtained from field experience. The level of confidence which can be placed in results from normal laboratory testing is shown to be too low for the data to be of real value. Recommendations are therefore given for the ways in which service data should be collected and analysed.
Resumo:
Recently introduced surface nanoscale axial photonics (SNAP) makes it possible to fabricate high-Q-factor microresonators and other photonic microdevices by dramatically small deformation of the optical fiber surface. To become a practical and robust technology, the SNAP platform requires methods enabling reproducible modification of the optical fiber radius at nanoscale. In this Letter, we demonstrate superaccurate fabrication of high-Q-factor microresonators by nanoscale modification of the optical fiber radius and refractive index using CO laser and UV excimer laser beam exposures. The achieved fabrication accuracy is better than 2Å in variation of the effective fiber radius. © 2011 Optical Society of America.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Recently introduced surface nanoscale axial photonics (SNAP) makes it possible to fabricate high-Q-factor microresonators and other photonic microdevices by dramatically small deformation of the optical fiber surface. To become a practical and robust technology, the SNAP platform requires methods enabling reproducible modification of the optical fiber radius at nanoscale. In this Letter, we demonstrate superaccurate fabrication of high-Q-factor microresonators by nanoscale modification of the optical fiber radius and refractive index using CO laser and UV excimer laser beam exposures. The achieved fabrication accuracy is better than 2Å in variation of the effective fiber radius. © 2011 Optical Society of America.
Resumo:
Background/aims - To determine which biometric parameters provide optimum predictive power for ocular volume. Methods - Sixty-seven adult subjects were scanned with a Siemens 3-T MRI scanner. Mean spherical error (MSE) (D) was measured with a Shin-Nippon autorefractor and a Zeiss IOLMaster used to measure (mm) axial length (AL), anterior chamber depth (ACD) and corneal radius (CR). Total ocular volume (TOV) was calculated from T2-weighted MRIs (voxel size 1.0 mm3) using an automatic voxel counting and shading algorithm. Each MR slice was subsequently edited manually in the axial, sagittal and coronal plane, the latter enabling location of the posterior pole of the crystalline lens and partitioning of TOV into anterior (AV) and posterior volume (PV) regions. Results - Mean values (±SD) for MSE (D), AL (mm), ACD (mm) and CR (mm) were −2.62±3.83, 24.51±1.47, 3.55±0.34 and 7.75±0.28, respectively. Mean values (±SD) for TOV, AV and PV (mm3) were 8168.21±1141.86, 1099.40±139.24 and 7068.82±1134.05, respectively. TOV showed significant correlation with MSE, AL, PV (all p<0.001), CR (p=0.043) and ACD (p=0.024). Bar CR, the correlations were shown to be wholly attributable to variation in PV. Multiple linear regression indicated that the combination of AL and CR provided optimum R2 values of 79.4% for TOV. Conclusion - Clinically useful estimations of ocular volume can be obtained from measurement of AL and CR.
Resumo:
Miniature slow light Surface Nanoscale Axial Photonics (SNAP) devices are reviewed. The fabrication precision of these devices is two orders of magnitude higher and the transmission losses are two orders of magnitude smaller than for any of the previously reported technologies for fabrication of miniature photonic circuits. In the first part of the report, a SNAP bottle resonator with a few nm high radius variation is demonstrated as the record small, slow light, and low loss 2.6 ns dispersionless delay line of 100 ps pulses. Next, a record small SNAP bottle resonator exhibiting the 20 ns/nm dispersion compensation of 100 ps pulses is demonstrated. In the second part of the report, the prospects of the SNAP technology in applications to telecommunications, optical signal processing, quantum computing, and microfluidics are discussed. © 2014 IEEE.
Resumo:
The analysis of complex networks is usually based on key properties such as small-worldness and vertex degree distribution. The presence of symmetric motifs on the other hand has been related to redundancy and thus robustness of the networks. In this paper we propose a method for detecting approximate axial symmetries in networks. For each pair of nodes, we define a continuous-time quantum walk which is evolved through time. By measuring the probability that the quantum walker to visits each node of the network in this time frame, we are able to determine whether the two vertices are symmetrical with respect to any axis of the graph. Moreover, we show that we are able to successfully detect approximate axial symmetries too. We show the efficacy of our approach by analysing both synthetic and real-world data. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
The Surface Nanoscale Axial Photonics (SNAP) platform will be reviewed. This platform enables creation of miniature ultralow loss resonant photonic circuits with unprecedented subangstrom precision. The prospective slow light SNAP optofluidic sensors will be described. © 2015 OSA.
Resumo:
We consider an optical fiber with a nanoscale variation of the effective fiber radius that supports whispering gallery modes slowly propagating along the fiber, and reveal that the radius variation can be designed to support the reflectionless propagation of these modes. We show that reflectionless modulations can realize control of the transmission amplitude and temporal delay, while enabling close packing due to the absence of cross talk, in contrast to the conventional potentials.
Resumo:
We present data on the development a new type of optical fibre polariser and the characterisation of its wavelength properties. The device is fashioned using a two step process. Firstly, a standard UV long period grating (LPG) with a period of 330μm is inscribed into hydrogenated SMF-28, followed by femtosecond laser ablation of a groove parallel to the fibre axis. The UV inscribed LPGs have inherently low birefringence. However, the removal of the cladding layer parallel to the location of the LPG within the fibre core (as a result the ablation) modifies the cladding modes that couple with the LPG. Furthermore, the groove breaks the fibre symmetry introducing a non-uniform stress profile across the fibre cross section leading to significant birefringence. We show that increasing the depth of the groove increases the birefringence, and this behaviour coupled with the ability to control the wavelength location of the LPGs attenuations peaks results in a polariser able to operate at almost any wavelength and birefringence. The maximum birefringence reported here as polarisation mode splitting was approximately 39±0.1nm with a polarisation loss of 10dB. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
Surface nanoscale axial photonics (SNAP) structures are fabricated with a femtosecond laser for the first time, to the best of our knowledge. The inscriptions introduced by the laser pressurize the fiber and cause its nanoscale effective radius variation. We demonstrate the subangstrom precise fabrication of individual and coupled SNAP microresonators having the effective radius variation of several nanometers. Our results pave the way to a novel ultraprecise SNAP fabrication technology based on the femtosecond laser inscription.