12 resultados para autosomal dominant cerebellar ataxia

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. Tuberous Sclerosis Complex (TSC) is an autosomal-dominant disease caused by the loss of function of the heterodimeric complex hamartin/tuberin due to TSC1/TSC2 gene mutation. The consequent abnormal activation of mammalian target of rapamycin (mTOR), a serine threonine kinase regulating cellular growth, metabolism and proliferation, is responsible for the structural and functional abnormalities observed in TSC. mTOR inhibitors are a class of drugs specifically targeting the mTOR pathway with promising benefits as a specific targeted treatment of the disease. Areas covered. We have reviewed the literature focusing on the role of mTOR inhibitors in treating TSC-related conditions. They are currently approved for subependymal giant cell astrocytomas, renal angiomyolipomas and more recently for lymphangioleiomyomatosis, but a promising role has been shown also in the other clinical manifestation characteristics of TSC, such as cardiac rhabdomyomas, facial angiofibromas and epilepsy. Expert opinion. mTOR inhibition is considered a disease-modifying therapy and the best approach to prevent the progress of the natural history of the disease. For the first time we have the possibility not only to use a biologically targeted treatment, but also to address different manifestations at the same time, thus significantly improving the therapeutic outlook in this complex disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The binding of [3H]inositol hexakisphosphate ([3H] InsP6) to rat cerebellar membranes has been characterized with the objective of establishing the role, if any, of a membrane protein receptor. In the presence of EDTA, we have previously identified an InsP6-binding site with a capacity of approximately 20 pmol/mg protein (Hawkins, P. T., Reynolds, D. J. M., Poyner, D. R., and Hanley, M. R. (1990) Biochem. Biophys. Res. Commun. 167, 819-827). However, in the presence of 1 mM Mg2+, the capacity of [3H]InsP6 binding to membranes was increased approximately 9-fold. This enhancing effect of Mg2+ was reversed by addition of 10 microM of several cation chelators, suggesting that the increased binding required trace quantities of other metal cations. This is supported by experiments where it was possible to saturate binding by addition of excess membranes, despite not significantly depleting radioligand, pointing to removal of some other factor. Removal of endogenous cations from the binding assay by pretreatment with chelex resin also prevents the Mg(2+)-induced potentiation. Consideration of the specificity of the chelators able to abolish this potentiation suggested involvement of Fe3+ or Al3+. Both these ions (but not several others) were able to increase [3H]InsP6 binding to chelex-pretreated membranes at concentrations of 1 microM. It is possible to demonstrate synergy between Fe3+ and Mg2+ under these conditions. We propose that [3H]InsP6 may interact with membranes through non-protein recognition possibly via phospholipids, in a manner dependent upon trace metals. The implications of this for InsP6 biology are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[3H]Inositol hexakisphosphate (InsP6) binds with a heterogeneous distribution to frozen sections of unfixed rat brain and is displaced by unlabelled InsP6. The pattern of binding correlates with binding to neuronal cell bodies. [3H]InsP6 binding to cerebellar membranes has been further characterised, is reversible, and saturable, and exhibits high specificity for inositol polyphosphates. The IC50 for competition by unlabelled InsP6 is approximately 100nM, whereas inositol 1,3,4,5,6 pentakisphosphate (Ins(13456)P5), inositol 1,3,4,5 tetrakisphosphate (Ins(1345)P4), and inositol 1,4,5 trisphosphate (Ins(145)P3) bind with an affinity at least one order of magnitude lower. [3H]InsP6 binding is clearly distinct from previously characterised Ins(145)P3 (ref. 1, 2) and Ins(1345)P4 (ref. 3) binding, both in terms of pharmacology and brain distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vargo and Lusch propose a very exciting framework that aims in expanding the boundaries of the marketing discipline by moving away from the existing exchange paradigm towards a Service Dominant (S-D) logic. This new S-D logic has the potential to strengthen the theoretical grounds of marketing by establishing links to other disciplines. This commentary attempts to discuss some aspects of the foundational premises of the S-D logic from the perspective of the MC21 group with special emphases on innovation, value creation, and resource allocation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial patterns of the vacuolation ("spongiform change"), surviving cells, and prion protein (PrP) deposition were studied in the various cell laminae of the cerebellar cortex in 11 cases of sporadic Creutzfeldt-Jakob disease (sCJD). Clustering of the histological features, with the clusters regularly distributed along the folia, was evident in all cell laminae. In the molecular layer, clusters of vacuoles coincided with the surviving Purkinje cells. In the granule cell layer, however, the spatial relationship between the vacuoles and surviving cells was more complex and varied between cases. PrP deposition was not spatially correlated with either the vacuoles or the surviving cells in any of the cerebellar laminae in the majority of cases. In some cases, there were spatial relationships between th histological features in the molecular and granule cell layers. The data suggest that degeneration of the cerebellar cortex in sCJD may occur in a topographic pattern consistent with the spread of prion pathology along anatomical pathways. The development of the vacuolation may be an early stage of the pathology in the cerebellum preceding the appearance of the PrP deposits. In addition, there is evidence that the pathological changes may spread across the different laminae of the cerebellar cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Q parameter scales differently with the noise power for the signal-noise and the noise-noise beating terms in scalar and vector models. Some procedures for including noise in the scalar model largely under-estimate the Q parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The direction of synaptic plasticity at the connection between parallel fibres (PFs) and Purkinje cells can be modified by PF stimulation alone. Strong activation (Hartell, 1996) or high frequency stimulation (Schreurs and Alkon, 1993) of PFs induced a long-term depression (LTD) of PF-mediated excitatory postsynaptic currents. Brief raised frequency molecular layer stimulation produced a cAMP-dependent long-temi potentiation (LTP) of field potential (FP) responses (Salin et al., 1998). Thin slices of cerebellar vermis were prepared from 14-21 day old male Wistar rats decapitated under Halothane anaesthesia. FP's were recorded from the Purkinje cell layer in response to alternate 0.2Hz activation of stimulating electrodes placed in the molecular layer. In the presence of picrotoxin, FPs displayed two tetrodotoxin-sensitive, negative-going components termed N1 and N2. EPs were graded responses with paired pulse facilitation and were selectively blocked by 101AM 6-cyano-7-nitroquinoxaline-2,3-dicne (CNQX) an antagonist at iy,-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-type ionotropic glutamate receptors (AMPAR) suggesting that they were primarily PE-mediated. The effects of raised stimulus intensity (RS) and/or increased frequency (IF) activation of the molecular layer on FP responses were examined. In sagittai and transverse slices combined RS and IF molecular layer activation induced a LTD of the N2 component of FP responses. RSIF stimulation produced fewer incidences of LTD in sagittal slices when an inhibitor of nitric oxide synthase (NOS), guanylate cyclase (GC), protein kinase G (PKG) or the GABAB receptor antagonist CGP62349 was included into the perfusion medium. Application of a nitric oxide (NO) donor, a cyclic guanosine monophosphate (cGMP) analogue or a phosphodiesterase (PDE) type V inhibitor to prevent cGMP breakdown paired with IF stimulation produced an acute depression, Raised frequency (RF) molecular layer stimulation produced a slowly emerging LTD of N2 in sagittal slices that was largely blocked in the presence of NOS, cGMP or PKG inhibitors. In transverse slices RE stimulation produced a LTP of the N2 component that was prevented by an inhibitor of protein kinase A or NOS. Inhibition of cGMP-signalling frequently revealed an underlying potentiation suggesting that cGMP activity might mask the effects of cAMP. In sagittal slices RE stimulation resulted in a potentiation of FPs when the cAMP-specific PDE type IV inhibitor rolipram was incorporated into the perfusion medium. In summary, raised levels of PE stimulation can alter the synaptic efficacy at PF-Purkinje cell synapses. The results provide support for a role of NO/cGMP/PKG signalling in the induction of LTD in the cerebellar cortex and suggest that activation of GABAa receptors might also be important. The level of cyclic nucleotide-specific PDE activities may be crucial in determining the level of cGMP and CAMP activity and hence the direction of synaptic plasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the cerebellar cortex, forms of both long-term depression (LTD) and long-term potentiation (LTP) can be observed at parallel fibre (PF) - Purkinje cell (PC) synapses. A presynaptic variant of cerebellar LTP can be evoked in PCs by raised frequency stimulation (RFS) of parallel fibre at 4-16Hz for 15s. This form of LTP is dependent on protein kinase A (PKA) and nitric oxide (NO), and can spread to distant synapses. Application of an extracellular NO scavenger, cPTIO, was found to prevent the spread of LTP to distant PF synapses in rat cerebellar slices. G-substrate may be an important mediator of the NO-dependent pathway for LTD. 8-16Hz RFS of PFs without a high concentration of calcium chelator in the postsynaptic cell evokes LTD. In cerebellar slices from wild-type and transgenic, G-substrate knockout mice, 8Hz RFS was applied to PFs, with a low concentration of postsynaptic calcium chelator. In PCs from wild-type mice, LTD predominated, whereas in those from transgenic mice LTP predominated. The ascending axon (AA) segment of the granule cell axon forms synapses with PCs as well as the PF segment. PPF and fluctuation analysis of EPSCs in rat PCs confirmed that the release sites of AA synapses have a greater probability of transmitter release than PF synapses. Furthermore, AA release sites have greater mean quantal amplitude than PF synapses, which is not due to a different type of postsynaptic receptor. AA synapses were found to have limited capacity to undergo the presynaptic variant of LTP, and were potentiated less than PF synapses in the presence of the PKA activator, forskolin. AA synapses also did not undergo the postsynaptic form of LTP, nor LTD induced by conjunctive stimulation of climbing fibre and PF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in the strength of signalling between neurones are thought to provide a cellular substrate for learning and memory. In the cerebellar cortex, raising the frequency and the strength of parallel fibre (PF) stimulation leads to a long-term depression (LTD) of the strength of signalling at the synapse between PFs and Purkinje cells (PCs), which spreads to distant synapses to the same cell via a nitric oxide (NO) dependent mechanism. At the same synapse, but under conditions of reduced post-synaptic calcium activity, raised frequency stimulation (RFS) of PFs triggers a long-term potentiation of synaptic transmission. The aims of the work described in this thesis were to investigate the conditions necessary for LTD and LTP at this synapse following RFS and to identify the origins and second messenger cascades involved in the induction and spread of LTP and LTD. In thin, parasagittal cerebellar slices whole cell patch clamp recordings were made from PCs and the effects of RFS of one of two, independent PF inputs to the same PC were examined under a range of experimental conditions. Under conditions designed to reduce post-synaptic calcium activity, RFS to a single PF input led to LTP and a decreases in paired pulse facilitation (PPF) in both pathways. This heterosynaptic potentiation was prevented by inhibition of protein kinase A (PKA) or by inhibition of NO synthase with either 7-nitroindazole (7-NI) or NG Nitro-L-argenine methyl ester. Inhibition of guanylate cyclase (GC) or protein kinase G (PKG) had no effect. A similar potentiation was observed upon application of the adenylyl cyclase (AC) activator forskolin or the NO donor spermine NONOate. Both of these treatments also resulted in an increase in the frequency of mEPSCs, which provides further evidence for a presynaptic origin of LTP. Forskolin induced potentiation and the increase in mEPSC frequency were blocked by 7-NI. The styryl dye FM1-43, a fluorescent reporter of endo- and exocytosis, was also used to further examine the possible pre-synaptic origins of LTP. RFS or forskolin application enhanced FM1-43 de-staining and NOS inhibitors blocked this effect. Application of NONOate also enhanced FM1-43 de-staining. When post-synaptic calcium activity was less strictly buffered, RFS to a single PF input led to a transient potentiation that was succeeded by LTD in both pathways. This LTD, which resembled previously described forms, was prevented by inhibition of the NO/cGMP/PKG cascade. Modification of the AC/cAMP/PKA cascade had no effect. In summary, the direction of synaptic plasticity at the PF-PC synapse in response to RFS depends largely on the level of post-synaptic calcium activity. LTP and LTD were non-input specific and both forms of plasticity were dependent on NOS activity. Induction of LTP was mediated by a presynaptic mechanism and depended on NO and cAMP production. LTD on the other hand was a post-synaptic process and required activity of the NO/cGMP/PKG signalling cascade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: Humans with inactivating mutations in peroxisomal proliferators activated receptor gamma (PPAR?) typically develop a complex metabolic syndrome characterized by insulin resistance, diabetes, lipodystrophy, hypertension, and dyslipidaemia which is likely to increase their cardiovascular risk. Despite evidence that the activation of PPAR? may prevent cardiac fibrosis and hypertrophy, recent evidence has suggested that pharmacological activation of PPAR? causes increased cardiovascular mortality. In this study, we investigated the effects of defective PPAR? function on the development of cardiac fibrosis and hypertrophy in a murine model carrying a human dominant-negative mutation in PPAR?. Methods and results: Mice with a dominant-negative point mutation in PPAR? (P465L) and their wild-type (WT) littermates were treated with either subcutaneous angiotensin II (AngII) infusion or saline for 2 weeks. Heterozygous P465L and WT mice developed a similar increase in systolic blood pressure, but the mutant mice developed significantly more severe cardiac fibrosis to AngII that correlated with increased expression of profibrotic genes. Both groups similarly increased the heart weight to body weight ratio compared with saline-treated controls. There were no differences in fibrosis between saline-treated WT and P465L mice. Conclusion: These results show synergistic pathogenic effects between the presence of defective PPAR? and AngII-induced hypertension and suggest that patients with PPAR? mutation and hypertension may need more aggressive therapeutic measures to reduce the risk of accelerated cardiac fibrosis. © The Author 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent evidence has suggested cerebellar anomalies in developmental dyslexia. Therefore, we investigated cerebellar morphology in subjects with documented reading disabilities. We obtained T1-weighted magnetic resonance images in the coronal and sagittal planes from 11 males with prior histories of developmental dyslexia, and nine similarly-aged male controls. Proton magnetic resonance spectra (TE=136 ms, TR=2.4 s) were obtained bilaterally in the cerebellum. Phonological decoding skill was measured using non-word reading. Handedness was assessed using both the Annett questionnaire of hand preference and Annett’s peg moving task. Cerebellar symmetry was observed in the dyslexics but there was significant asymmetry (right grey matter>left grey matter) in controls. The interpretation of these results depended whether a motor- or questionnaire-based method was used to determine handedness. The degree of cerebellar symmetry was correlated with the severity of dyslexics’ phonological decoding deficit. Those with more symmetric cerebella made more errors on a nonsense word reading measure of phonological decoding ability. Left cerebellar metabolite ratios were shown to correlate significantly with the degree of cerebellar asymmetry (P<0.05) in controls. This relationship was absent in developmental dyslexics. Cerebellar morphology reflects the higher degree of symmetry found previously in the temporal and parietal cortex of dyslexics. The relationship of cerebellar asymmetry to phonological decoding ability and handedness, together with our previous finding of altered metabolite ratios in the cerebellum of dyslexics, lead us to suggest that there are alterations in the neurological organisation of the cerebellum which relate to phonological decoding skills, in addition to motor skills and handedness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple system atrophy (MSA) is a rare neurodegenerative disorder associated with parkinsonism, ataxia, and autonomic dysfunction. Its pathology is primarily subcortical comprising vacuolation, neuronal loss, gliosis, and α-synuclein-immunoreactive glial cytoplasmic inclusions (GO). To quantify cerebellar pathology in MSA, the density and spatial pattern of the pathological changes were studied in α-synuclein-immunolabelled sections of the cerebellar hemisphere in 10 MSA and 10 control cases. In MSA, densities of Purkinje cells (PC) were decreased and vacuoles in the granule cell layer (GL) increased compared with controls. In six MSA cases, GCI were present in cerebellar white matter. In the molecular layer (ML) and GL of MSA, vacuoles were clustered, the clusters exhibiting a regular distribution parallel to the edge of the folia. Purkinje cells were randomly or regularly distributed with large gaps between surviving cells. Densities of glial cells and surviving neurons in the ML and surviving cells and vacuoles in the GL were negatively correlated consistent with gliosis and vacuolation in response to neuronal loss. Principal components analysis (PCA) suggested vacuole densities in the ML and vacuole density and cell losses in the GL were the main source of neuropathological variation among cases. The data suggest that: (1) cell losses and vacuolation of the GCL and loss of PC were the most significant pathological changes in the cases studied, (2) pathological changes were topographically distributed, and (3) cerebellar pathology could influence cerebral function in MSA via the cerebello-dentato-thalamic tract.