5 resultados para auditory-motor interaction
em Aston University Research Archive
Resumo:
The evidence that cochlear implant listeners routinely experience stream segregation is limited and equivocal. Streaming in these listeners was explored using tone sequences matched to the center frequencies of the implant’s 22 electrodes. Experiment 1 measured temporal discrimination for short (ABA triplet) and longer (12 AB cycles) sequences (tone/silence durations = 60/40 ms). Tone A stimulated electrode 11; tone B stimulated one of 14 electrodes. On each trial, one sequence remained isochronous, and tone B was delayed in the other; listeners had to identify the anisochronous interval. The delay was introduced in the second half of the longer sequences. Prior build-up of streaming should cause thresholds to rise more steeply with increasing electrode separation, but no interaction with sequence length was found. Experiment 2 required listeners to identify which of two target sequences was present when interleaved with distractors (tone/silence durations = 120/80 ms). Accuracy was high for isolated targets, but most listeners performed near chance when loudness-matched distractors were added, even when remote from the target. Only a substantial reduction in distractor level improved performance, and this effect did not interact with target-distractor separation. These results indicate that implantees often do not achieve stream segregation, even in relatively unchallenging tasks.
Resumo:
This thesis describes a series of experiments investigating both sequential and concurrent auditory grouping in implant listeners. Some grouping cues used by normal-hearing listeners should also be available to implant listeners, while others (e.g. fundamental frequency) are unlikely to be useful. As poor spectral resolution may also limit implant listeners’ performance, the spread of excitation in the cochlea was assessed using Neural Response Telemetry (NRT) and the results were related to those of the perceptual tasks. Experiment 1 evaluated sequential segregation of alternating tone sequences; no effect of rate or evidence of perceptual ambiguity was found, suggesting that automatic stream segregation had not occurred. Experiment 2 was an electrode pitch-ranking task; some relationship was found between pitch-ranking judgements (especially confidence scores) and reported segregation. Experiment 3 used a temporal discrimination task; this also failed to provide evidence of automatic stream segregation, because no interaction was found between the effects of sequence length and electrode separation. Experiment 4 explored schema-based grouping using interleaved melody discrimination; listeners were not able to segregate targets and distractors based on pitch differences, unless accompanied by substantial level differences. Experiment 5 evaluated concurrent segregation in a task requiring the detection of level changes in individual components of a complex tone. Generally, large changes were needed and abrupt changes were no easier to detect than gradual ones. In experiment 6, NRT testing confirmed substantially overlapping simulation by intracochlear electrodes. Overall, little or no evidence of auditory grouping by implant listeners was found.
Resumo:
Motor timing tasks have been employed in studies of neurodevelopmental disorders such as developmental dyslexia and ADHD, where they provide an index of temporal processing ability. Investigations of these disorders have used different stimulus parameters within the motor timing tasks which are likely to affect performance measures. Here we assessed the effect of auditory and visual pacing stimuli on synchronised motor timing performance and its relationship with cognitive and behavioural predictors that are commonly used in the diagnosis of these highly prevalent developmental disorders. Twenty- one children (mean age 9.6 years) completed a finger tapping task in two stimulus conditions, together with additional psychometric measures. As anticipated, synchronisation to the beat (ISI 329 ms) was less accurate in the visually paced condition. Decomposition of timing variance indicated that this effect resulted from differences in the way that visual and auditory paced tasks are processed by central timekeeping and associated peripheral implementation systems. The ability to utilise an efficient processing strategy on the visual task correlated with both reading and sustained attention skills. Dissociations between these patterns of relationship across task modality suggest that not all timing tasks are equivalent.
Resumo:
This investigation aimed to pinpoint the elements of motor timing control that are responsible for the increased variability commonly found in children with developmental dyslexia on paced or unpaced motor timing tasks (Chapter 3). Such temporal processing abilities are thought to be important for developing the appropriate phonological representations required for the development of literacy skills. Similar temporal processing difficulties arise in other developmental disorders such as Attention Deficit Hyperactivity Disorder (ADHD). Motor timing behaviour in developmental populations was examined in the context of models of typical human timing behaviour, in particular the Wing-Kristofferson model, allowing estimation of the contribution of different timing control systems, namely timekeeper and implementation systems (Chapter 2 and Methods Chapters 4 and 5). Research examining timing in populations with dyslexia and ADHD has been inconsistent in the application of stimulus parameters and so the first investigation compared motor timing behaviour across different stimulus conditions (Chapter 6). The results question the suitability of visual timing tasks which produced greater performance variability than auditory or bimodal tasks. Following an examination of the validity of the Wing-Kristofferson model (Chapter 7) the model was applied to time series data from an auditory timing task completed by children with reading difficulties and matched control groups (Chapter 8). Expected group differences in timing performance were not found, however, associations between performance and measures of literacy and attention were present. Results also indicated that measures of attention and literacy dissociated in their relationships with components of timing, with literacy ability being correlated with timekeeper variance and attentional control with implementation variance. It is proposed that these timing deficits associated with reading difficulties are attributable to central timekeeping processes and so the contribution of error correction to timing performance was also investigated (Chapter 9). Children with lower scores on measures of literacy and attention were found to have a slower or failed correction response to phase errors in timing behaviour. Results from the series of studies suggest that the motor timing difficulty in poor reading children may stem from failures in the judgement of synchrony due to greater tolerance of uncertainty in the temporal processing system.
Resumo:
Research on aphasia has struggled to identify apraxia of speech (AoS) as an independent deficit affecting a processing level separate from phonological assembly and motor implementation. This is because AoS is characterized by both phonological and phonetic errors and, therefore, can be interpreted as a combination of deficits at the phonological and the motoric level rather than as an independent impairment. We apply novel psycholinguistic analyses to the perceptually phonological errors made by 24 Italian aphasic patients. We show that only patients with relative high rate (>10%) of phonetic errors make sound errors which simplify the phonology of the target. Moreover, simplifications are strongly associated with other variables indicative of articulatory difficulties - such as a predominance of errors on consonants rather than vowels -but not with other measures - such as rate of words reproduced correctly or rates of lexical errors. These results indicate that sound errors cannot arise at a single phonological level because they are different in different patients. Instead, different patterns: (1) provide evidence for separate impairments and the existence of a level of articulatory planning/programming intermediate between phonological selection and motor implementation; (2) validate AoS as an independent impairment at this level, characterized by phonetic errors and phonological simplifications; (3) support the claim that linguistic principles of complexity have an articulatory basis since they only apply in patients with associated articulatory difficulties.