6 resultados para attenuated total reflection
em Aston University Research Archive
Resumo:
Protein crystallization is of strategic and commercial relevance in the post-genomic era because of its pivotal role in structural proteomics projects. Although protein structures are crucial for understanding the function of proteins and to the success of rational drug design and other biotechnology applications, obtaining high quality crystals is a major bottleneck to progress. The major means of obtaining crystals is by massive-scale screening of a target protein solution with numerous crystallizing agents. However, when crystals appear in these screens, one cannot easily know if they are crystals of protein, salt, or any other molecule that happens to be present in the trials. We present here a method based on Attenuated Total Reflection (ATR)-FT-IR imaging that reliably identifies protein crystals through a combination of chemical specificity and the visualizing capability of this approach, thus solving a major hurdle in protein crystallization. ATR-FT-IR imaging was successfully applied to study the crystallization of thaumatin and lysozyme in a high-throughput manner, simultaneously from six different solutions. This approach is fast as it studies protein crystallization in situ and provides an opportunity to examine many different samples under a range of conditions.
Resumo:
We report on a novel experimental study of a pH-responsive polyelectrolyte brush at the silicon/D2O interface. A poly[2-(diethylamino)ethyl methacrylate] brush was grown on a large silicon crystal which acted as both a substrate for a neutron reflectivity solid/liquid experiment but also as an FTIR-ATR spectroscopy crystal. This arrangement has allowed for both neutron reflectivities and FTIR spectroscopic information to be measured in parallel. The chosen polybase brush shows strong IR bands which can be assigned to the N-D+ stretch, D2O, and a carbonyl group. From such FTIR data, we are able to closely monitor the degree of protonation along the polymer chain as well as revealing information concerning the D2O concentration at the interface. The neutron reflectivity data allows us to determine the physical brush profile normal to the solid/liquid interface along with the corresponding degree of hydration. This combined approach makes it possible to quantify the charge on a polymer brush alongside the morphology adopted by the polymer chains. © 2013 American Chemical Society.
Resumo:
The potential for inhibitors of nuclear factor-κB (NF-κB) activation to act as inhibitors of muscle protein degradation in cancer cachexia has been evaluated both in vitro and in vivo. Activation of NF-κB is important in the induction of proteasome expression and protein degradation by the tumour factor, proteolysis-inducing factor (PIF), since the cell permeable NF-κB inhibitor SN50 (18 μM) attenuated the expression of 205 proteasome α-subunits, two subunits of the 195 regulator MSSI and p42, and the ubiquitin-conjugating enzyme, E214k, as well as the decrease in myosin expression in murine myotubes. To assess the potential therapeutic benefit of NF-κB inhibitors on muscle atrophy in cancer cachexia, two potential inhibitors were employed; curcumin (50 μM) and resveratrol (30 μM). Both agents completely attenuated total protein degradation in murine myotubes at all concentrations of PIF, and attenuated the PIF-induced increase in expression of the ubiquitin-proteasome proteolytic pathway, as determined by the 'chymotrypsin-like' enzyme activity, proteasome subunits and E2 14k. However, curcumin (150 and 300 mg kg-1) was ineffective in preventing weight loss and muscle protein degradation in mice bearing the MAC16 tumour, whereas resveratrol (1 mg kg-1) significantly attenuated weight loss and protein degradation in skeletal muscle, and produced a significant reduction in NF-κB DNA-binding activity. The inactivity of curcumin was probably due to a low bioavailability. These results suggest that agents which inhibit nuclear translocation of NF-κB may prove useful for the treatment of muscle wasting in cancer cachexia.
Resumo:
Both tumor necrosis factor-alpha (TNF-alpha)/interferon-gamma (IFN-gamma) and angiotensin II (ANG II) induced an increase in total protein degradation in murine myotubes, which was completely attenuated by treatment with beta-hydroxy-beta-methylbutyrate (HMB; 50 microM). There was an increase in formation of reactive oxygen species (ROS) within 30 min, as well as an increase in the activity of both caspase-3 and -8, and both effects were attenuated by HMB. Moreover, inhibitors of caspase-3 and -8 completely attenuated both ROS formation and total protein degradation induced by TNF-alpha/IFN-gamma and ANG II. There was an increased autophosphorylation of double-stranded RNA-dependent protein kinase (PKR), which was attenuated by the specific caspase-3 and -8 inhibitors. Neither ROS formation or protein degradation occurred in myotubes expressing a catalytically inactive PKR variant, PKRDelta6, in response to TNF-alpha/IFN-gamma, compared with myotubes expressing wild-type PKR, although there was still activation of caspase-3 and -8. HMB also attenuated activation of PKR, suggesting that it was important in protein degradation. Formation of ROS was attenuated by rotenone, an inhibitor of the mitochondrial electron transport chain, nitro-l-arginine methyl ester, an inhibitor of nitric oxide synthase, and SB 203580, a specific inhibitor of p38 mitogen-activated protein kinase (p38 MAPK), which also attenuated total protein degradation. Activation of p38 MAPK by PKR provides the link to ROS formation. These results suggest that TNF-alpha/IFN-gamma and ANG II induce muscle protein degradation by a common signaling pathway, which is attenuated by HMB, and that this involves the initial activation of caspase-3 and -8, followed by autophosphorylation and activation of PKR, which then leads to increased ROS formation via activation of p38 MAPK. Increased ROS formation is known to induce protein degradation through the ubiquitin-proteasome pathway.
Resumo:
The underlying theme of this thesis is one of exploring the processes involved in the enhancement of percutaneous absorption. The development of an attenuated total reflectance Fourier-Transform infrared (ATR-FTIR) spectroscopic method to analyse diffusion of suitable topically applied compounds in membrane is described. Diffusion coefficients (D/h2) and membrane solubility (AO) for topically applied compounds were determined using a solution to Fick's second law of diffusion. This method was employed to determine the diffusional characteristics of a model permeant, 4-cyanophenol (CP), across silicone membrane as a function of formulation applied and permeant physicochemical properties. The formulations applied were able to either affect CP diffusivity and/or its membrane solubility in the membrane; such parameters partially correlated with permeant physicochemical properties in each formulation. The interplay during the diffusion process between drug, enhancer and vehicle in stratum corneum (SC) was examined. When enhancers were added to the applied formulations, CP diffusivity and solubility were significantly enhanced when compared to the neat propylene glycol (PG) application. Enhancers did not affect PG diffusivity in SC but enhancers did affect PG solubility in SC. PG diffusion closely resembled that of CP, implying that the respective transport processes were inter-related. Additionally, a synergistic effect, which increases CP diffusivity and membrane solubility in SC, was found to occur between PG and water. Using 12-azidooleic acid (AOA) as an IR active probe for oleic acid, the simultaneous penetration of CP, AOA and PG into human stratum corneum was determined. It was found that the diffusion profiles for all three permeants were similar. This indicated that the diffusion of each species through SC was closely related and most likely occurred via the same route or SC microenvironment.
Resumo:
Azidoprofen {2-(4-azidophenyl)propionic acid; AZP}, an azido-substituted arylalkanoic acid, was investigated as a model soft drug candidate for a potential topical non-steroidal anti-inflammatory agent (NSAIA). Reversed-phase high performance liquid chromatography (HPLC) methods were developed for the assay of AZP, a series of ester analogues and their· degradation products. 1H-NMR spectroscopy was also employed as an analytical method in selected cases. Reduction of the azido-group to the corresponding amine has been proposed as a potential detoxification mechanism for compounds bearing this substituent. An in vitro assay to measure the susceptibility of azides towards reduction was developed using dithiothreitol as a model reducing agent. The rate of reduction of AZP was found to be base-dependent, hence supporting the postulated mechanism of thiol-mediated reduction via nucleophilic attack by the thiolate anion. Prodrugs may enhance topical bioavailability through the manipulation of physico-chemical properties of the parent drug. A series of ester derivatives of AZP were investigated for their susceptibility to chemical and enzymatic hydrolysis, which regenerates the parent acid. Use of alcoholic cosolvents with differing alkyl functions to that of the ester resulted in transesterification reactions, which were found to be enzyme-mediated. The skin penetration of AZP was assessed using an in vitro hairless mouse skin model, and silastic membrane in some cases. The rate of permeation of AZP was found to be a similar magnitude to that of the well established NSAIA ibuprofen. Penetration rates were dependent on the vehicle pH and drug concentration when solutions were employed. In contrast, flux was independent of pH when suspension formulations were used. Pretreatment of the skin with various enhancer regimes, including oleic acid and azone in propylene glycol, promoted the penetration of AZP. An intense IR absorption due to the azide group serves as a highly diagnostic marker, enabling azido compounds to be detected in the outer layers of the· stratum corneum following their application to skin, using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). This novel application enabled a non-invasive examination of the percutaneous penetration enhancement of a model azido compound in vivo in man, in the presence of the enhancer oleic acid.