6 resultados para asymptotic preserving
em Aston University Research Archive
Resumo:
The dynamics of peptides and proteins generated by classical molecular dynamics (MD) is described by using a Markov model. The model is built by clustering the trajectory into conformational states and estimating transition probabilities between the states. Assuming that it is possible to influence the dynamics of the system by varying simulation parameters, we show how to use the Markov model to determine the parameter values that preserve the folded state of the protein and at the same time, reduce the folding time in the simulation. We investigate this by applying the method to two systems. The first system is an imaginary peptide described by given transition probabilities with a total folding time of 1 micros. We find that only small changes in the transition probabilities are needed to accelerate (or decelerate) the folding. This implies that folding times for slowly folding peptides and proteins calculated using MD cannot be meaningfully compared to experimental results. The second system is a four residue peptide valine-proline-alanine-leucine in water. We control the dynamics of the transitions by varying the temperature and the atom masses. The simulation results show that it is possible to find the combinations of parameter values that accelerate the dynamics and at the same time preserve the native state of the peptide. A method for accelerating larger systems without performing simulations for the whole folding process is outlined.
Resumo:
A horizontal fluid layer heated from below in the presence of a vertical magnetic field is considered. A simple asymptotic analysis is presented which demonstrates that a convection mode attached to the side walls of the layer sets in at Rayleigh numbers much below those required for the onset of convection in the bulk of the layer. The analysis complements an earlier analysis by Houchens [J. Fluid Mech. 469, 189 (2002)] which derived expressions for the critical Rayleigh number for the onset of convection in a vertical cylinder with an axial magnetic field in the cases of two aspect ratios. © 2008 American Institute of Physics.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
While most of the research in Knowledge Management (KM) has focused on business communities, there is a breadth of potential applications of KM theory and practice to wider society. This paper explores the potential of KM for rural communities, specifically for those that want to preserve their social history and collective memories (what we call heritage) to enrich the lives of others. In KM terms, this is a task of accumulating and recording knowledge (using KM techniques such as story-telling and communities of practice) to enable its retention for future use (by interested people perhaps through KM systems). We report a case study of Cardrona, a valley of approximately 120 people in New Zealand's South Island. Realising that time would erode knowledge of their community a small, motivated group of residents initiated a KM programme to create a legacy for a wider community including younger generations, tourists and scholars. This paper applies KM principles to rural communities that want to harness their collective knowledge for wider societal gain, and develops a community-based framework to inform such initiatives. As a result, we call for a wider conceptualisation of KM to include motives for managing knowledge beyond business performance to accommodate community (cKM). © 2010 Operational Research Society.
Resumo:
Case-based Reasoning's (CBR) origins were stimulated by a desire to understand how people remember information and are in turn reminded of information, and that subsequently it was recognized that people commonly solve problems by remembering how they solved similar problems in the past. Thus CBR became an appropriate way to find out the most suitable solution method for a new problem based on the old methods for the same or even similar problems. The research highlights how to use CBR to aid biologists in finding the best method to cryo preserve algae. The study found CBR could be used successfully to find the similarity percentage between the new algae and old cases in the case base. The prediction result showed approximately 93.75% accuracy, which proves the CBR system can offer appropriate recommendations for most situations. © 2011 IEEE.
Resumo:
The Stokes perturbative solution of the nonlinear (boundary value dependent) surface gravity wave problem is known to provide results of reasonable accuracy to engineers in estimating the phase speed and amplitudes of such nonlinear waves. The weakling in this structure though is the presence of aperiodic “secular variation” in the solution that does not agree with the known periodic propagation of surface waves. This has historically necessitated increasingly higher-ordered (perturbative) approximations in the representation of the velocity profile. The present article ameliorates this long-standing theoretical insufficiency by invoking a compact exact n-ordered solution in the asymptotic infinite depth limit, primarily based on a representation structured around the third-ordered perturbative solution, that leads to a seamless extension to higher-order (e.g., fifth-order) forms existing in the literature. The result from this study is expected to improve phenomenological engineering estimates, now that any desired higher-ordered expansion may be compacted within the same representation, but without any aperiodicity in the spectral pattern of the wave guides.