24 resultados para asymmetric allylation
em Aston University Research Archive
Resumo:
Comparing the Poincaré plots of the Tokamap and the underlying Hamiltonian system reveals large differences. This stems from the particular choice of evaluation of the singular perturbations present in the system (a series of δ functions). A symmetric evaluation approach is proposed and shown to yield results that almost perfectly match the Hamiltonian system. © 2005 The American Physical Society.
Resumo:
For some time there has been a puzzle surrounding the seasonal behaviour of stock returns. This paper demonstrates that there is an asymmetric relationship between systematic risk and return across the different months of the year for both large and small firms. In the case of both large and small firms systematic risk appears to be priced in only two months of the year, January and April. During the other months no persistent relationship between systematic risk and return appears to exist. The paper also shows that when systematic risk is priced, the size of the systematic risk premium is higher for large firms than for small firms and varies significantly across the months of the year.
Resumo:
A femtosecond laser was used to modify a part of the cladding of a standard LPG bend sensor. The device produced wavelength shifts depending upon the direction of bend, thus making a shape sensor.
Resumo:
A long period grating (LPG) written in a standard optical fibre was modified by using a femtosecond laser to induce an asymmetric change in the cladding's refractive index. This device produced blue and red wavelength shifts depending on the orientation of applied curvature, with maximum sensitivities of -1.6 nm m and +3.8 nm m, suggesting that this type of LPG may be useful as a shape sensor.
Resumo:
Recently introduced Surface Nanoscale Axial Photonics (SNAP) is based on whispering gallery modes circulating around the optical FIber surface and undergoing slow axial propagation. In this paper we develop the theory of propagation of whispering gallery modes in a SNAP microresonator, which is formed by nanoscale asymmetric perturbation of the FIber translation symmetry and called here a nanobump microresonator. The considered modes are localized near a closed stable geodesic situated at the FIber surface. A simple condition for the stability of this geodesic corresponding to the appearance of a high Q-factor nanobump microresonator is found. The results obtained are important for engineering of SNAP devices and structures.
Resumo:
Companies under pressure from stakeholders to meet profit expectations are often tempted to cut advertising expenses, particularly in times of economic difficulties. However, firms may not fully grasp the actual impact of such drastic cuts. Indeed, the general assumption is that advertising effects are symmetric: the numerical sales impact of budget increase or decrease would be the same in absolute value. Our paper addresses this gap by developing a new model based on multivariate time-series analysis (VAR models) to capture these asymmetric dynamic relationships. Our results show that advertising models are improved by allowing the capture of these asymmetric patterns.
Resumo:
We present the impact of Asymmetric filtering of strong (e.g. 35 GHz) optical filters on the performance of 42.7 Gb/s 50% RZ-DPSK systems. The performance is evaluated when offsetting the filter by substantial amounts and it is found that with an offset of almost half the bit rate there is a significant improvement in the calculated Q.
Resumo:
We present the impact of frequency offsetting of strong (e.g. 35 GHz) optical filters on the performance of 42.7 Gb/s 50% RZ-DPSK systems. The performance is evaluated when offsetting the filter by substantial amounts and it is found that with an offset of almost half the bit rate there is a significant improvement in the calculated 'Q' (> 1 dB). We deployed balanced, constructive single ended and destructive single ended detection, so that we could investigate the physical origins of the penalty reduction of asymmetric filtering of 42.7 Gb/s 50% RZ-DPSK system.
Resumo:
A long period grating (LPG) written in a standard optical fibre was modified by using a femtosecond laser to induce an asymmetric change in the cladding's refractive index. This device produced blue and red wavelength shifts depending on the orientation of applied curvature, with maximum sensitivities of -1.6 nm m and +3.8 nm m, suggesting that this type of LPG may be useful as a shape sensor.
Resumo:
We present the impact of frequency offsetting of strong (e.g. 35 GHz) optical filters on the performance of 42.7 Gb/s 50% RZ-DPSK systems. The performance is evaluated when offsetting the filter by substantial amounts and it is found that with an offset of almost half the bit rate there is a significant improvement in the calculated 'Q' (> 1 dB). We deployed balanced, constructive single ended and destructive single ended detection, so that we could investigate the physical origins of the penalty reduction of asymmetric filtering of 42.7 Gb/s 50% RZ-DPSK system.
Resumo:
A femtosecond laser was used to modify a part of the cladding of a standard LPG bend sensor. The device produced wavelength shifts depending upon the direction of bend, thus making a shape sensor. © 2005 Optical Society of America.
Resumo:
We investigate the impact of a duty cycle on a wavelength allocated transmission at 40 Gbit/s with narrow, off-centre, optical filtering. We also study how the shape of the off-centred VSB filter affects the performance of the optical system. © 2004 Elsevier Inc. All rights reserved.