6 resultados para asset health state
em Aston University Research Archive
Resumo:
Insulated gate bipolar transistor (IGBT) modules are important safety critical components in electrical power systems. Bond wire lift-off, a plastic deformation between wire bond and adjacent layers of a device caused by repeated power/thermal cycles, is the most common failure mechanism in IGBT modules. For the early detection and characterization of such failures, it is important to constantly detect or monitor the health state of IGBT modules, and the state of bond wires in particular. This paper introduces eddy current pulsed thermography (ECPT), a nondestructive evaluation technique, for the state detection and characterization of bond wire lift-off in IGBT modules. After the introduction of the experimental ECPT system, numerical simulation work is reported. The presented simulations are based on the 3-D electromagnetic-thermal coupling finite-element method and analyze transient temperature distribution within the bond wires. This paper illustrates the thermal patterns of bond wires using inductive heating with different wire statuses (lifted-off or well bonded) under two excitation conditions: nonuniform and uniform magnetic field excitations. Experimental results show that uniform excitation of healthy bonding wires, using a Helmholtz coil, provides the same eddy currents on each, while different eddy currents are seen on faulty wires. Both experimental and numerical results show that ECPT can be used for the detection and characterization of bond wires in power semiconductors through the analysis of the transient heating patterns of the wires. The main impact of this paper is that it is the first time electromagnetic induction thermography, so-called ECPT, has been employed on power/electronic devices. Because of its capability of contactless inspection of multiple wires in a single pass, and as such it opens a wide field of investigation in power/electronic devices for failure detection, performance characterization, and health monitoring.
Resumo:
Non-intrusive monitoring of health state of induction machines within industrial process and harsh environments poses a technical challenge. In the field, winding failures are a major fault accounting for over 45% of total machine failures. In the literature, many condition monitoring techniques based on different failure mechanisms and fault indicators have been developed where the machine current signature analysis (MCSA) is a very popular and effective method at this stage. However, it is extremely difficult to distinguish different types of failures and hard to obtain local information if a non-intrusive method is adopted. Typically, some sensors need to be installed inside the machines for collecting key information, which leads to disruption to the machine operation and additional costs. This paper presents a new non-invasive monitoring method based on GMRs to measure stray flux leaked from the machines. It is focused on the influence of potential winding failures on the stray magnetic flux in induction machines. Finite element analysis and experimental tests on a 1.5-kW machine are presented to validate the proposed method. With time-frequency spectrogram analysis, it is proven to be effective to detect several winding faults by referencing stray flux information. The novelty lies in the implement of GMR sensing and analysis of machine faults.
Resumo:
This study covers two areas of contribution to the knowledge, firstly it tried to investigate rigourously the relationships of a number of factors believed that they may affect the climate perception, classified into three types to arrive to prove a hypothesis of the important role that qualification and personal factors play in shaping the climate perception, this is in contrast with situational factors. Secondly, the study tries to recluster the items of a wide-range applied scale for the measurement of climate named HAY in order to overcome the cross-cultural differences between the Kuwaiti and the American society, and to achieve a modified dimensions of climate for a civil service organisation in Kuwait. Furthermore, the study attempts to carry out a diagnostic test for the climate of the Ministry of Public Health in Kuwait, aiming to diagnose the perceived characteristics of the MoPH organisation, and suggests a number of areas to be given attention if an improvement is to be introduced. The study used extensively the statistical and the computer facilities to make the analysis more representing the field data, on the other hand this study is characterised by the very highly responsive rate of the main survey which would affect the findings reliability. Three main field studies are included, the first one was to conduct the main questionnaire where the second was to measure the "should be" climate by the experts of MoPH using the DELPHI technique, and the third was to conduct an extensive meeting with the very top management team in MoPH. Results of the first stage were subject to CLUSTER analysis for the reconstruction of the HAY tool, whereas comparative analysis was carried on between the results of the second and third stages on one side, the first from the other.
Resumo:
Integrated vehicle health management (IVHM) is a collection of data relevant to the present and future performance of a vehicle system and its transformation into information can be used to support operational decisions. This design and operation concept embraces an integration of sensors, communication technologies, and artificial intelligence to provide vehicle-wide abilities to diagnose problems and recommend solutions. This article aims to report the state-of-the-art of IVHM research by presenting a systematic review of the literature. The literature from different sources is collated and analysed, and the major emerging themes are presented. On this basis, the article describes the IVHM concept and its evolution, discusses configurations and existing applications along with main drivers, potential benefits and barriers to adoption, summarizes design guidelines and available methods, and identifies future research challenges.
Resumo:
Cranfield University in collaboration with The Boeing Company have set up a Centre of Excellence in IVHM on the University?s technology park. Sponsored by the East of England Development Agency (EEDA), the Centre carries out pre-competitive research and development of IVHM technologies for the benefit of industrial partners. In addition, the dedicated facilities and university staff provide an unparalleled educational environment for learning and applying IVHM technologies. Boeing is actively involved in the creation and work of the Centre through its enterprise-wide Phantom Works technology organization. This paper will describe the organisation and operation of the Centre and will illustrate its activities by describing a research project being carried out in the Centre. This project is a demonstration of an end to end IVHM system beginning with cost/benefit analysis and extending to maintenance, logistics and operations decision support.