3 resultados para aspheric surfaces
em Aston University Research Archive
Resumo:
Many workers have studied the ocular components which occur in eyes exhibiting differing amounts of central refractive error but few have ever considered the additional information that could be derived from a study of peripheral refraction. Before now, peripheral refraction has either been measured in real eyes or has otherwise been modelled in schematic eyes of varying levels of sophistication. Several differences occur between measured and modelled results which, if accounted for, could give rise to more information regarding the nature of the optical and retinal surfaces and their asymmetries. Measurements of ocular components and peripheral refraction, however, have never been made in the same sample of eyes. In this study, ocular component and peripheral refractive measurements were made in a sample of young near-emmetropic, myopic and hyperopic eyes. The data for each refractive group was averaged. A computer program was written to construct spherical surfaced schematic eyes from this data. More sophisticated eye models were developed making use of linear algebraic ray tracing program. This method allowed rays to be traced through toroidal aspheric surfaces which were translated or rotated with respect to each other. For simplicity, the gradient index optical nature of the crystalline lens was neglected. Various alterations were made in these eye models to reproduce the measured peripheral refractive patterns. Excellent agreement was found between the modelled and measured peripheral refractive values over the central 70o of the visual field. This implied that the additional biometric features incorporated in each eye model were representative of those which were present in the measured eyes. As some of these features are not otherwise obtainable using in vivo techniques, it is proposed that the variation of refraction in the periphery offers a very useful optical method for studying human ocular component dimensions.
Resumo:
Previous research has indicated that schematic eyes incorporating aspheric surfaces but lacking gradient index are unable to model ocular spherical aberration and peripheral astigmatism simultaneously. This limits their use as wide-angle schematic eyes. This thesis challenges this assumption by investigating the flexibility of schematic eyes comprising aspheric optical surfaces and homogeneous optical media. The full variation of ocular component dimensions found in human eyes was established from the literature. Schematic eye parameter variants were limited to these dimensions. The levels of spherical aberration and peripheral astigmatism modelled by these schematic eyes were compared to the range of measured levels. These were also established from the literature. To simplify comparison of modelled and measured data, single value parameters were introduced; the spherical aberration function (SAF), and peripheral astigmatism function (PAF). Some ocular components variations produced a wide range of aberrations without exceeding the limits of human ocular components. The effect of ocular component variations on coma was also investigated, but no comparison could be made as no empirical data exists. It was demonstrated that by combined manipulation of a number of parameters in the schematic eyes it was possible to model all levels of ocular spherical aberration and peripheral astigmatism. However, the unique parameters of a human eye could not be obtained in this way, as a number of models could be used to produce the same spherical aberration and peripheral astigmatism, while giving very different coma levels. It was concluded that these schematic eyes are flexible enough to model the monochromatic aberrations tested, the absence of gradient index being compensated for by altering the asphericity of one or more surfaces.
Resumo:
The present thesis evaluates various aspects of videokeratoscopes, which are now becoming increasingly popular in the investigation of corneal topography. The accuracy and repeatability of these instruments has been assessed mainly using spherical surfaces, however, few studies have assessed the performance of videokeratoscopes in measuring convex aspheric surfaces. Using two videokeratoscopes, the accuracy and repeatability of measurements using twelve aspheric surfaces is determined. Overall, the accuracy and repeatability of both instruments were acceptable, however, progressively flatter surfaces introduced greater errors in measurement. The possible reasons for these errors are discussed. The corneal surface is a biological structure lubricated by the precorneal tear film. The effects of variations in the tear film on the repeatability of videokeratoscopes have not been determined in terms of peripheral corneal measurements. The repeatability of two commercially available videokeratoscopes is assessed. The repeatability is found to be dependent on the point of measurement on the corneal surface. Typically, superior and nasal meridians exhibit poorest repeatability. It is suggested that interference of the ocular adnexa is responsible for the reduced repeatability. This localised reduction in repeatability will occur for all videokeratoscopes. Further, comparison with the keratometers and videokeratoscopes used show that measurements between these instruments are not interchangeable. The final stage of this thesis evaluates the performance of new algorithms. The characteristics of a new videokeratoscope are described. This videokeratoscope is used to test the accuracy of the new algorithms for twelve aspheric surfaces. The new algorithms are accurate in determining the shape of aspheric surfaces, more so than those algorithms proposed at present.