8 resultados para arterial oxygen tension
em Aston University Research Archive
Resumo:
Background: There is an inverse relationship between pocket depth and pocket oxygen tension with deep pockets being associated with anaerobic bacteria. However, little is known about how the host tissues respond to bacteria under differing oxygen tensions within the periodontal pocket. Aim: To investigate the effect of different oxygen tensions upon nuclear factor-kappa B (NF-?B) activation and the inflammatory cytokine response of oral epithelial cells when exposed to nine species of oral bacteria. Materials and Methods: H400 oral epithelial cells were equilibrated at 2%, 10% or 21% oxygen. Cells were stimulated with heat-killed oral bacteria at multiplicity of infection 10:1, Escherichia coli lipopolysaccharide (15 µg/ml) or vehicle control. Interleukin-8 (IL-8) and tumour necrosis factor-alpha (TNF-a) levels were measured by enzyme-linked immunosorbent assay and NF-?B activation was measured by reporter vector or by immunohistochemical analysis. Results: Tannerella forsythensis, Porphyromonas gingivalis and Prevotella intermedia elicited the greatest epithelial NF-?B activation and cytokine responses. An oxygen-tension-dependent trend in cytokine production was observed with the highest IL-8 and TNF-a production observed at 2% oxygen and lowest at 21% oxygen. Conclusions: These data demonstrate a greater pro-inflammatory host response and cell signalling response to bacteria present in more anaerobic conditions, and hypersensitivity of epithelial cells to pro-inflammatory stimuli at 2% oxygen, which may have implications for disease pathogenesis and/or therapy.
Resumo:
Molecular oxygen (O2) is an essential component for survival and development. Variation in O2 levels leads to changes in molecular signaling and ultimately affects the physiological functions of many organisms. Nitric oxide (NO) and hydrogen sulfide (H2S) are two gaseous cellular signaling molecules that play key roles in several physiological functions involved in maintaining vascular homeostasis including vasodilation, anti-inflammation, and vascular growth. Apart from the aforementioned functions, NO and H2S are believed to mediate hypoxic responses and serve as O2 chemosensors in biological systems. In this literature review, we briefly discuss NO and H2S and their roles during hypoxia.
Resumo:
The numbers of zoospores produced by a pathogenic strain of Saprolegnia diclina and their behaviour are markedly influenced by a variety of environmental variables including temperature, pH, oxygen tension and the presence of biocides. The use of the latter is not recommended, as fish readily succumb to equivalent concentrations of biocides. Analysis of the pattern of distribution of resulting zoospore cysts demonstrates that zoospores become dispersed by random movement even while in the proximity of the parent colony’s nutrient source. However, the presence of amino acids, in particular aspartic and glutamic acid, at concentrations which occur in fish tissue promotes the directed movement of zoospores towards the nutrient source thereby encouraging the colonization of fresh sites.
Resumo:
Activation of the hypoxia-inducible factor (HIF) pathway is a critical step in the transcriptional response to hypoxia. Although many of the key proteins involved have been characterised, the dynamics of their interactions in generating this response remain unclear. In the present study, we have generated a comprehensive mathematical model of the HIF-1a pathway based on core validated components and dynamic experimental data, and confirm the previously described connections within the predicted network topology. Our model confirms previous work demonstrating that the steps leading to optimal HIF-1a transcriptional activity require sequential inhibition of both prolyl- and asparaginyl-hydroxylases. We predict from our model (and confirm experimentally) that there is residual activity of the asparaginyl-hydroxylase FIH (factor inhibiting HIF) at low oxygen tension. Furthermore, silencing FIH under conditions where prolyl-hydroxylases are inhibited results in increased HIF-1a transcriptional activity, but paradoxically decreases HIF-1a stability. Using a core module of the HIF network and mathematical proof supported by experimental data, we propose that asparaginyl hydroxylation confers a degree of resistance upon HIF-1a to proteosomal degradation. Thus, through in vitro experimental data and in silico predictions, we provide a comprehensive model of the dynamic regulation of HIF-1a transcriptional activity by hydroxylases and use its predictive and adaptive properties to explain counter-intuitive biological observations.
Resumo:
Aims: Pulmonary arterial hypertension [1] is a proliferative disorder associated with enhanced proliferation and suppressed apoptosis of pulmonary artery smooth muscle cells (PASMCs). Reactive oxygen species (ROS) is implicated in the development of PAH and regulates the vascular tone and functions. However, which cellular signaling mechanisms are triggered by ROS in PAH is still unknown. Hence, here we wished to characterize the signaling mechanisms triggered by ROS. Methods and Results: By Western blots, we showed that increased intracellular ROS caused inhibition of the glycolytic pyruvate kinase M2 (PKM2) activity through promoting the phosphorylation of PKM2. Monocrotaline (MCT)-induced rats developed severe PAH and right ventricular hypertrophy, with a significant increase in the P-PKM2 and decrease in pyruvate kinase activity which could be attenuated with the treatments of PKM2 activators, FBP and l-serine. The antioxidant NAC, apocynin and MnTBAP had the similar protective effects in the development of PAH. In vitro assays confirmed that inhibition of PKM2 activity could modulate the flux of glycolytic intermediates in support of cell proliferation through the increased pentose phosphate pathway (PPP). Increased ROS and decreased PKM2 activity also promoted the Cav1.2 expression and intracellular calcium. Conclusion: Our data provide new evidence that PKM2 makes a critical regulatory contribution to the PAHs for the first time. Decreased pyruvate kinase M2 activity confers additional advantages to rat PASMCs by allowing them to sustain anti-oxidant responses and thereby support cell survival in PAH. It may become a novel treatment strategy in PAH by using of PKM2 activators.
Resumo:
Purpose: To investigate the coexistence of ocular microvascular and systemic macrovascular abnormalities in early stage, newly diagnosed and previously untreated normal tension glaucoma patients (NTG). Methods: Retinal vascular reactivity to flickering light was assessed in 19 NTG and 28 age-matched controls by means of dynamic retinal vessel analysis (IMEDOS GmbH, Jena, Germany). Using a newly developed computational model, the entire dynamic vascular response profile to flicker light was imaged and used for analysis. In addition, assessments of carotid intima-media thickness (IMT) and pulse wave analysis (PWA) were conducted on all participants, along with blood pressure (BP) measurements and blood analyses for lipid metabolism markers. Results: Patients with NTG demonstrated an increased right and left carotid IMT (p = 0.015, p = 0.045) and an elevated PWA augmentation index (p = 0.017) in comparison with healthy controls, along with an enhanced retinal arterial constriction response (p = 0.028), a steeper retinal arterial constriction slope (p = 0.031) and a reduced retinal venous dilation response (p = 0.026) following flicker light stimulation. Conclusions: Early stage, newly diagnosed, NTG patients showed signs of subclinical vascular abnormalities at both macro- and micro-vascular levels, highlighting the need to consider multi-level circulation-related pathologies in the development and progression of this type of glaucoma.
Resumo:
Objective: To compare and contrast the presence of ocular and systemic vascular function in newly diagnosed and previously untreated primary open angle glaucoma (POAG) and normal tension glaucoma (NTG) patients with comparable, early stage, functional loss. Methods: The systemic vascular function of 19 POAG patients, 19 NTG patients and 20 healthy controls was assessed by means of 24 hour ambulatory blood pressure (ABPM), peripheral pulse wave analysis (PWA) and carotid intima-media thickness (IMT). Retinal vascular reactivity to flicker light was assessed using dynamic retinal vessel analysis (DVA,IMEDOS, GmbH, Jena, Germany). Results: When compared to normal controls, both POAG and NTG patients exhibited similarly increased nocturnal systemic blood pressure variability (p=0.011); peripheral arterial stiffness (p=0.015), carotid IMT (p=0.040) and reduced ocular perfusion pressure (OPP) (p<0.001). Furthermore, on DVA analysis, both groups of glaucoma patients also exhibited steeper retinal arterial constriction slopes (slope AC) following cessation of flicker (p=0.007) and a similarly increased fluctuation in arterial and venous baseline diameter (p=0.008 and p=0.009 respectively) in comparison to controls. Conclusion: POAG and NTG patients exhibit similar alterations in both ocular and systemic circulation at the early stages of their disease process. This highlights not only the importance of considering vascular risk factors in both conditions, but also raises questions about the current separation of the two conditions into completely distinct clinical entities.
Resumo:
Statins possess anti-inflammatory effects that may contribute to their ability to slow atherogenesis, whereas nitric oxide (NO) also influences inflammatory cell adhesion. This study aimed to determine whether a novel NO-donating pravastatin derivative, NCX 6550 [(1S-[1∝(ßS*,dS*),2∝,6a∝,8ß-(R*),8a∝]]-1,2,6,7,8,8a-hexahydro-ß,δ,6-trihydroxy-2-methyl-8-(2-methyl-1-oxobutoxy)-1-naphthalene-heptanoic acid 4-(nitrooxy)butyl ester)], has greater anti-inflammatory properties compared with pravastatin in normal and atherosclerotic apolipoprotein E receptor knockout (ApoE-/-) mice. C57BL/6 and ApoE-/- mice were administered pravastatin (40 mg/kg), NCX 6550 (48.5 mg/kg), or vehicle orally for 5 days. Ex vivo studies assessed splenocyte adhesion to arterial segments and splenocyte reactive oxygen species (ROS) generation. NCX 6550 significantly reduced splenocyte adhesion to artery segments in both C57BL/6 (8.8 ± 1.9% versus 16.6 ± 6.7% adhesion; P < 0.05) and ApoE-/- mice (9.3 ± 2.9% versus 23.4 ± 4.6% adhesion; P < 0.05) concomitant with an inhibition of endothelial intercellular adhesion molecule-1 expression. NCX 6550 also significantly reduced phorbol 12-myristate 13-acetate-induced ROS production that was enhanced in isolated ApoE-/- splenocytes. Conversely, pravastatin had no significant effects on adhesion in normal or ApoE-/- mice but reduced the enhanced ROS production from ApoE-/- splenocytes. In separate groups of ApoE-/- mice, NCX 6550 significantly enhanced endothelium-dependent relaxation to carbachol in aortic segments precon-tracted with phenylephrine (-logEC50, 6.37 ± 0.37) compared with both vehicle-treated (-logEC50, 5.81 ± 0.15; P < 0.001) and pravastatin-treated (-logEC50, 5.57 ± 0.45; P < 0.05) mice. NCX 6550 also significantly reduced plasma monocyte chemoattractant protein-1 levels (648.8 pg/ml) compared with both vehicle (1191.1 pg/ml; P < 0.001) and pravastatin (847 ± 71.0 pg/ml; P < 0.05) treatment. These data show that NCX 6550 exerts superior anti-inflammatory actions compared with pravastatin, possibly through NO-related mechanisms.