10 resultados para apolipoprotein A1
em Aston University Research Archive
Resumo:
Plasma α-tocopherol (AT) concentrations are inversely related to cardiovascular (CV) risk; however, intervention studies with AT have failed to show any consistent benefit against CV disease (CVD). Proteomics offers the opportunity to examine novel effects of AT supplementation on protein expression and therefore improve our understanding of the physiological roles of AT. Thus, to investigate the effects of AT supplementation on the plasma proteome of healthy subjects we have undertaken a double-blind, randomised, parallel design supplementation study in which healthy subjects (n = 32; 11 male and 21 female) consumed AT supplements (134 or 268 mg/day) or placebo capsules for up to 28 days. Plasma samples were obtained before supplementation and after 14 and 28 days of supplementation for analysis of changes in the plasma proteome using 2-DE and MALDI-MS. Using semiquantitative proteomics, we observed that proapolipoprotein A1 (identified by MS and Western blotting) was altered at least two-fold. Using quantitative ELISA techniques, we confirmed a significant increase in plasma apolipoprotein A1 concentration following supplementation with AT which was both time and dose dependent (p < 0.01 after 28 days supplementation with 268 mg AT/day). These data demonstrate the time and dose sensitivity of the plasma proteome to AT supplementation. © 2006 Wiley-VCH Verlag GmbH & Co. KGaA.
Resumo:
Statins are agents widely used to lower LDL-cholesterol (LDL-C) in primary and secondary prevention of coronary heart disease. The five statins available in the UK (simvastatin, pravastatin, fluvastatin, atorvastatin and rosuvastatin) differ in many of their pharmacologic properties. In addition to lowering LDL-C, statins also increase HDL-cholesterol (HDL-C) moderately. There have been rare reports of significant HDL-C decreases in patients commenced on fibrates and when thiazolidinediones are added to fibrates. This is known as a 'paradoxical HDL-C decrease' as both groups of agents usually increase HDL-C. This phenomenon has never been clearly documented following statin therapy. We now describe a patient with type 2 diabetes who showed this paradoxical fall in HDL-C (baseline HDL-C: 1.8 mmol/L; on simvastatin 40 mg HDL-C 0.6 mmol/L; on atorvastatin 20 mg HDL-C 0.9 mmol/L) with a similar decrease in apolipoprotein A1. No similar decrease was observed with pravastatin and rosuvastatin therapy. This phenomenon appeared to be associated with statin treatment and not a statin/fibrate combination. Our patient clearly demonstrated a paradoxical HDL-C fall with simvastatin and atorvastatin, but not pravastatin or rosuvastatin. Simvastatin and atorvastatin share many pharmacokinetic properties such as lipophilicity while pravastatin and rosuvastatin are relatively hydrophilic and are not metabolized by cytochrome P450 3A4. However, these characteristics do not explain the dramatic reductions in HDL-C observed.
Resumo:
Cardiovascular disease (CVD) is the leading cause of death in Europe responsible for more than 4.3 million deaths annually. The World Health Organisation funded the Monica project (1980s-1990s) which monitored ten million subjects aged 22-6Syrs, and demonstrated that coronary heart disease (CHD) mortality declined over 10 years, was due in two thirds of cases to reduced incidence of CHD (reduced risk behaviours e.g. poor diet and smoking) and one third by improved treatments. Epidemiological evidence suggests diets rich in antioxidants decrease incidence of CVD. Regular consumption of nuts, rich in vitamin E and polyphenols reduces atherosclerosis, an important risk for heart disease. Intervention studies to date using alpha tocopherol (an active component of vitamin E) have not consistently proved beneficial. This thesis aims to investigate the effect of almond supplementation on vascular risk factors in healthy young males (18-3Syrs); mature males and female(>SOyrs); and males considered at increased risk of CVD (18-3Syrs) in a cohort of 67 subjects. The effects of almond intake were assessed after 2Sg/d for four weeks followed by SOg/d for four weeks and compared to a control group which did not consume almonds or change their diet. Cardiovascular risk was assessed by plasma lipid profiles, apolipoprotein A1, plasma nitrates/nitrates, vascular flow, BMl, blood pressure, sVCAM-1 and protein oxidation. Systolic and diastolic blood pressures were reduced in almond supplemented volunteers but not in controls. Dietary monounsaturated fatty acids, polyunsaturated fatty acid content and total dietary fats were increased by almond supplementation. Neither sVCAM-1, venous occlusion plethysmography nor plasma nitrite levels were affected by almond intake in any independent group. No significant changes in plasma lipids, and apolipoprotein A1 were observed. In conclusion almonds supplementation caused a reduction in blood pressure that may be due to increased sensitivity of the baroreceptors after increased monounsaturated fatty acid intake.
Resumo:
Elevated serum cholesterol concentrations in mid-life increase risk for Alzheimer's disease (AD) in later life. However, lower concentrations of cholesterol-carrying high density lipoprotein (HDL) and its principal apolipoprotein A1 (ApoA1) correlate with increased risk for AD. As HDL transports oxocarotenoids, which are scavengers of peroxynitrite, we have investigated the hypothesis that lower HDL and oxocarotenoid concentrations during AD may render HDL susceptible to nitration and oxidation and in turn reduce the efficiency of reverse cholesterol transport (RCT) from lipid-laden cells. Fasting blood samples were obtained from subjects with 1) AD without cardiovascular comorbidities and risk factors (AD); 2) AD with cardiovascular comorbidities and risk factors (AD Plus); 3) normal cognitive function; for carotenoid determination by HPLC, analysis of HDL nitration and oxidation by ELISA, and 3H-cholesterol export to isolated HDL. HDL concentration in the plasma from AD Plus patients was significantly lower compared to AD or control subject HDL levels. Similarly, lutein, lycopene, and zeaxanthin concentrations were significantly lower in AD Plus patients compared to those in control subjects or AD patients, and oxocarotenoid concentrations correlated with Mini-Mental State Examination scores. At equivalent concentrations of ApoA1, HDL isolated from all subjects irrespective of diagnosis was equally effective at mediating RCT. HDL concentration is lower in AD Plus patients' plasma and thus capacity for RCT is compromised. In contrast, HDL from patients with AD-only was not different in concentration, modifications, or function from HDL of healthy age-matched donors. The relative importance of elevating HDL alone compared with elevating carotenoids alone or elevating both to reduce risk for dementia should be investigated in patients with early signs of dementia.
Resumo:
During inflammation, many cell types release reactive oxygen species (ROS) via the respiratory burst. These ROS are potent oxidants of LDL and its major protein, apolipoprotein B. Whilst native LDL is taken up by endothelial cells via a feedback controlled receptor-regulated process, oxidative modification of LDL renders it a ligand for many scavenger receptors. Scavenger receptors include CD-36, LOX-1 and the prototypic macrophage SR A I/II, all of which are variably expressed. Uncontrolled uptake of oxidised LDL is implicated in the pathogenesis of atherosclerosis. In addition, oxidised LDL increases CCR2 protein and mRNA expression on monocytes, and thus may contribute to monocyte retention and perpetuation in inflammatory, unstable atherosclerotic lesions. However, little data are available on the effects of specific minor modifications to apolipoprotein B. In order to identify the sequence specificity and nature of oxidative modifications which confer altered properties on LDL, we have investigated the effects of modified peptides (which correspond to the putative LDLR binding domain) on LDL uptake by HUVECs and U937 monocytes.
Resumo:
The abundance of senile plaques (SP) and neurofibrillary tangles (NFT) was studied in cortical and subcortical regions from 30 patients with Alzheimer’s disease (AD) expressing different apolipoprotein E (apoE) genotypes. Principal components analysis (PCA) was used to identify the most important neuropathological variations between individual patients and to determine whether these variations were related to apoE genotype. The first two principal components (PC) accounted for 60% and 40% of the total variance of the SP and NFT data respectively. The abundance of SP in the frontal and occipital cortex and NFT in the frontal cortex, amygdala and substantia nigra were positively correlated with the first principal component (PC1). Analysis of the SP data revealed that the apoE score of the patient (the sum of the two alleles) was positively correlated with PC1 while analysis of the NFT data revealed no significant correlations between apoE score and the PC. The data suggest that apoE genotype was more closely related to variations in the distribution and abundance of SP than of NFT. In addition, a more rapid spread of SP into the frontal and occipital cortex may occur in patients with a high apoE score.
Resumo:
The spatial patterns of the diffuse, primitive, and classic beta-amyloid (Abeta) deposits was studied in the frontal and temporal cortex in cases of Alzheimer’s disease (AD) expressing different apolipoprotein (Apo E) genotypes. No significant differences in the density of the three Abeta deposit subtypes were observed in individuals expressing genotypes e2/3 and e3/3 compared with those expressing e3/4 and e4/4. In all patients, Abeta deposit subtypes occurred in the tissue in clusters. Chi-square contingency analyses of the data suggested that the cluster size of the diffuse and classic Abeta deposits was unrelated to Apo E genotype. However, the primitive (‘neuritic’) type Abeta deposits occurred more frequently in smaller, denser clusters in individuals expressing genotypes e3/4 and e4/4 compared with those expressing e2/3 and e3/3. Hence, the presence of the e4 allele may be associated with a more specific pattern of neuronal degeneration in the frontal and temporal cortex in AD.
Resumo:
It is well established that adenosine receptors are involved in cardioprotection and that protein kinase B (PKB) is associated with cell survival. Therefore, in this study we have investigated whether adenosine receptors (A1, A2A and A3) activate PKB by Western blotting and determined the involvement of phosphatidylinositol 3-kinase (PI-3K)/PKB in adenosine-induced preconditioning in cultured newborn rat cardiomyocytes. Adenosine (non-selective agonist), CPA (A1 selective agonist) and Cl-IB-MECA (A(3) selective agonist) all increased PKB phosphorylation in a time- and concentration-dependent manner. The combined maximal response to CPA and Cl-IB-MECA was similar to the increase in PKB phosphorylation induced by adenosine alone. CGS 21680 (A2A selective agonist) did not stimulate an increase in PKB phosphorylation. Adenosine, CPA and Cl-IB-MECA-mediated PKB phosphorylation were inhibited by pertussis toxin (PTX blocks G(i)/G(o)-protein), genistein (tyrosine kinase inhibitor), PP2 (Src tyrosine kinase inhibitor) and by the epidermal growth factor (EGF) receptor tyrosine kinase inhibitor AG 1478. The PI-3K inhibitors wortmannin and LY 294002 blocked A(1) and A(3) receptor-mediated PKB phosphorylation. The role of PI-3K/PKB in adenosine-induced preconditioning was assessed by monitoring Caspase 3 activity and lactate dehydrogenase (LDH) release induced by exposure of cardiomyocytes to 4 h hypoxia (0.5% O2) followed by 18 h reoxygenation (HX4/R). Pre-treatment with wortmannin had no significant effect on the ability of adenosine-induced preconditioning to reduce the release of LDH or Caspase 3 activation following HX4/R. In conclusion, we have shown for the first time that adenosine A1 and A3 receptors trigger increases in PKB phosphorylation in rat cardiomyocytes via a G1/G0-protein and tyrosine kinase-dependent pathway. However, the PI-3K/PKB pathway does not appear to be involved in adenosine-induced cardioprotection by preconditioning Adenosine A1 receptor .