4 resultados para antifungal polysulphides

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The naturally occurring reactive electrophilic species 12-oxo-phytodienoic acid (12-oxo-PDA) is a potent antifungal agent, whereas the plant growth regulator jasmonic acid, which is synthesized from 12-oxo-PDA, is ineffective. To address what structural features of the molecule endow it with antifungal activity, we synthesized a series of molecular mimics of 12-oxo-PDA varying in the length of the alkyl chain at its C-4 ring position. The octyl analogue (4-octyl cyclopentenone) was the most effective at suppressing spore germination and subsequent mycelial growth of a range of fungal pathogens and was particularly effective against Cladosporium herbarum and Botrytis cinerea, with minimum fungicidal concentrations in the range 100-200 µM. Introduction of a carboxyl group to the end of the chain, mimicking natural fatty acids, markedly reduced antifungal efficacy. Electrolyte leakage, indicative of membrane perturbation, was evident in both C. herbarum and B. cinerea exposed to 4-octyl cyclopentenone. Lipid composition analysis of the fungal spores revealed that those species with a high oil content, namely Fusarium oxysporum and Alternaria brassicicola, were less sensitive to 4-octyl cyclopentenone. The comparable hydrophobicity of 4-octyl cyclopentenone and 12-oxo-PDA accounts for the similar spore suppression activity of these two compounds. The relative ease of synthesis of 4-octyl cyclopentenone makes it an attractive compound for potential use as an antifungal agent. © 2011 SGM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the effect of iron deprivation and sub-inhibitory concentrations of antifungal agents on yeast cell surface antigen recognition by antibodies from patients with Candida infections. Separation of cell wall surface proteins by sodium dodecyl-polyacrylamide gel electrophoresis (SDS-PAGE) and immunological detection by immunoblotting, revealed that antigenic profiles of yeasts were profoundly influenced by the growth environment. Cells grown under iron-depleted conditions expressed several iron-regulated proteins that were recognized by antibodies from patient sera. An attempt to characterize these proteins by lectin blotting with concanavalin A revealed that some could be glycoprotein in nature. Furthermore, these proteins which were located within cell walls and on yeast surfaces, were barely or not expressed in yeasts cultivated under iron-sufficient conditions. The magnitude and heterogeneity of human antibody responses to these iron-regulated proteins were dependent on the type of Candida infection, serum antibody class and yeast strain. Hydroxamate-type siderophores were also detected in supernatants of iron depleted yeast cultures. This evidence suggests that Candida albicans expresses iron-regulated proteins/glycoproteins in vitro which may play a role in siderophore-mediated iron uptake in Candida albicans. Sequential monitoring of IgG antibodies directed against yeast surface antigens during immunization of rabbits revealed that different antigens were recognized particularly during early and later stages of immunization in iron-depleted cells compared to iron-sufficient cells. In vitro and in vivo adherence studies demonstrated that growth phase, yeast strain and growth conditions affect adhesion mechanisms. In particular, growth under iron-depletion in the presence of sub-inhibitory concentrations of polyene and azole antifungals enhanced the hydrophobicity of C.albicans. Growth conditions also influenced MICs of antifungals, notably that of ketoconazole. Sub-inhibitory concentrations of amphotericin B and fluconazole had little effect on surface antigens, whereas nystatin induced profound changes in surface antigens of yeast cells. The effects of such drug concentrations on yeast cells coupled with host defence mechanisms may have a significant affect on the course of Candida infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous research has shown that the naturally occurring reactive electrophilic species (RES), 12-oxophytodienoic acid (OPDA), not only serves as a precursor for jasmonic acid but is also a potent antifungal compound. However, both the low amount present in plants and the multistep synthesis required to produce this compound on a scale viable for agrochemical use currently limits its practical value. The aim of this research was to generate a range of molecular mimics of OPDA with a minimum number of synthetic steps and screen for antifungal activity. Synthetic 4-octyl-cyclopentenone containing the cyclopentenone ring and an eight carbon alkyl chain was found to show the highest in vitro antifungal activity against C. herbarum and B. cinerea with minimum inhibition concentration (MIC) of 100-200µM. This indicates that structurally simplified 4-octyl-cyclopentenone can be successfully synthesised to mimic the antifungal activity of OPDA against specific fungal strains. Application of 4-octyl-cyclopentenone could act as surfactant by disrupting and disorganising the lipid membrane non-specifically, resulting in the leakage of potassium ions, which was the proposed mode of action of this compound. However, the sensitivity of fungi to this compound is not correlated to the lipid composition of fungal spores. (E)-2-alkenals were also studied for their antimicrobial activity and (E)-2-undecenal was found to have the highest antimicrobial activity against a range of pathogens. The hydrophilic moiety (the a,ß-unsaturated carbonyl group), common to both (E)-2-undecenal and 4-octyl-cyclentenone is essential to their bioactivity, and the hydrophobic moiety plays an important role in their antimicrobial activities. 4-Octyl-cyclopentenone showed no visible toxicity to the test plant, Arabidopsis thaliana, suggesting that its high antifungal activity against Botrytis and Cladosporium could be exploited for commercialisation as a new generation of agrochemical.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Localised, targeted drug delivery to the oesophagus offers the potential for more effective delivery and reduced drug dosages, coupled with increased patient compliance. This thesis considers bioadhesive liquids, orally retained tablets and films as well as chewable dosage forms as drug delivery systems to target the oesophagus. Miconazole nitrate was used as a model antifungal agent. Chitosan and xanthan gum hydrogels were evaluated as viscous polymer viables with the in vitro retention, drug release and minimum inhibitory concentration values of the formulations measured. Xanthan showed prolonged retention on the oesophageal surface in vitro yet chitosan reduced the MIC value; both polymers offer potential for local targeting to the oesophagus. Cellulose derivatives were investigated within orally retained dosage forms. Both drug and polymer dissolution rates were measured to investigate the drug release mechanism and to develop a formulation with concomitant drug and polymer release to target the oesophagus with solubilised drug within a viscous media. Several in vitro dissolution methods were evaluated to measure drug release from chewable dosage forms with both drug and polymer dissolution quantified to investigate the effects of dissolution apparatus on drug release. The results from this thesis show that a range of drug delivery strategies that can be used to target drug to the oesophagus. The composition of these formulations as well as the methodology used within the development are crucial to best understand the formulation and predict its performance in vivo.