5 resultados para anion exchange

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Standard and high-performance anion-exchange-chromatographic techniques have been used to purify myo-[3H]inositol pentakisphosphates from various myo-[3H]inositol-prelabelled cells. Slime mould (Dictyostelium discoideum) contained 8 microM-myo-[3H]inositol 1,3,4,5,6-pentakisphosphate 16 microM-myo-[3H]inositol 1,2,3,4,6-pentakisphosphate and 36 microM-D-myo-[3H]inositol 1,2,4,5,6-pentakisphosphate [calculated intracellular concentrations; Stephens & Irvine (1990) Nature (London) 346 580-583]; germinating mung-bean (Phaseolus aureus) seedlings contained both D- and L-myo-[3H]inositol 1,2,4,5,6-pentakisphosphate (which was characterized by 31P and two-dimensional proton n.m.r.) and D- and/or L-myo-[3H]inositol 1,2,3,4,5-pentakisphosphate; HL60 cells contained myo-[3H]inositol 1,3,4,5,6-pentakisphosphate (in a 500-fold excess over the other species), myo-[3H]inositol 1,2,3,4,6-pentakisphosphate and D- and/or L-myo-[3H]inositol 1,2,4,5,6-pentakisphosphate; and NG-115-401L-C3 cells contained myo-[3H]inositol 1,3,4,5,6-pentakisphosphate (in a 100-fold excess over the other species), D- and/or L-myo-[3H]inositol 1,2,4,5,6-pentakisphosphate, myo-[3H]inositol 1,2,3,4,6-pentakisphosphate and D- and/or L-myo-[3H]inositol 1,2,3,4,5-pentakisphosphate. 2. Multiple soluble ATP-dependent myo-inositol pentakisphosphate kinase activities have been detected in slime mould, rat brain and germinating mung-bean seedling homogenates. In slime-mould cytosolic fractions, the three myo-inositol pentakisphosphates that were present in intact slime moulds could be phosphorylated to myo-[3H]inositol hexakisphosphate: the relative first-order rate constants for these reactions were, in the order listed above, 1:8:31 respectively (with first-order rate constants in the intact cell of 0.1, 0.8 and 3.1 s-1, assuming a cytosolic protein concentration of 50 mg/ml), and the Km values of the activities for their respective inositol phosphate substrates (in the presence of 5 mM-ATP) were 1.6 microM, 3.8 microM and 1.4 microM. At least two forms of myo-inositol pentakisphosphate kinase activity could be resolved from a slime-mould cytosolic fraction by both pharmacological and chromatographic criteria. Rat brain cytosol and a soluble fraction derived from germinating mung-bean seedlings could phosphorylate myo-inositol D/L-1,2,4,5,6-, D/L-1,2,3,4,5-, 1,2,3,4,6- and 1,3,4,5,6-pentakisphosphates to myo-inositol hexakisphosphate: the relative first-order rate constants were 57:27:77:1 respectively for brain cytosol (with first-order rate constants in the intact cell of 0.0041, 0.0019, 0.0056 and 0.000073 s-1 respectively, assuming a cytosolic protein concentration of 50 mg/ml) and 1:11:12:33 respectively for mung-bean cytosol (with first-order rate constants in a supernatant fraction with a protein concentration of 10 mg/ml of 0.0002, 0.0022, 0.0024 and 0.0066 s-1 respectively).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two key issues defined the focus of this research in manufacturing plasmid DNA for use In human gene therapy. First, the processing of E.coli bacterial cells to effect the separation of therapeutic plasmid DNA from cellular debris and adventitious material. Second, the affinity purification of the plasmid DNA in a Simple one-stage process. The need arises when considering the concerns that have been recently voiced by the FDA concerning the scalability and reproducibility of the current manufacturing processes in meeting the quality criteria of purity, potency, efficacy, and safety for a recombinant drug substance for use in humans. To develop a preliminary purification procedure, an EFD cross-flow micro-filtration module was assessed for its ability to effect the 20-fold concentration, 6-time diafiltration, and final clarification of the plasmid DNA from the subsequent cell lysate that is derived from a 1 liter E.coli bacterial cell culture. Historically, the employment of cross-flow filtration modules within procedures for harvesting cells from bacterial cultures have failed to reach the required standards dictated by existing continuous centrifuge technologies, frequently resulting in the rapid blinding of the membrane with bacterial cells that substantially reduces the permeate flux. By challenging the EFD module, containing six helical wound tubular membranes promoting centrifugal instabilities known as Dean vortices, with distilled water between the Dean number's of 187Dn and 818Dn,and the transmembrane pressures (TMP) of 0 to 5 psi. The data demonstrated that the fluid dynamics significantly influenced the permeation rate, displaying a maximum at 227Dn (312 Imh) and minimum at 818Dn (130 Imh) for a transmembrane pressure of 1 psi. Numerical studies indicated that the initial increase and subsequent decrease resulted from a competition between the centrifugal and viscous forces that create the Dean vortices. At Dean numbers between 187Dn and 227Dn , the forces combine constructively to increase the apparent strength and influence of the Dean vortices. However, as the Dean number in increases above 227 On the centrifugal force dominates the viscous forces, compressing the Dean vortices into the membrane walls and reducing their influence on the radial transmembrane pressure i.e. the permeate flux reduced. When investigating the action of the Dean vortices in controlling tile fouling rate of E.coli bacterial cells, it was demonstrated that the optimum cross-flow rate at which to effect the concentration of a bacterial cell culture was 579Dn and 3 psi TMP, processing in excess of 400 Imh for 20 minutes (i.e., concentrating a 1L culture to 50 ml in 10 minutes at an average of 450 Imh). The data demonstrated that there was a conflict between the Dean number at which the shear rate could control the cell fouling, and the Dean number at which tile optimum flux enhancement was found. Hence, the internal geometry of the EFD module was shown to sub-optimal for this application. At 579Dn and 3 psi TMP, the 6-fold diafiltration was shown to occupy 3.6 minutes of process time, processing at an average flux of 400 Imh. Again, at 579Dn and 3 psi TMP the clarification of the plasmid from tile resulting freeze-thaw cell lysate was achieved at 120 Iml1, passing 83% (2,5 mg) of the plasmid DNA (6,3 ng μ-1 10.8 mg of genomic DNA (∼23,00 Obp, 36 ng μ-1 ), and 7.2 mg of cellular proteins (5-100 kDa, 21.4 ngμ-1 ) into the post-EFD process stream. Hence the EFD module was shown to be effective, achieving the desired objectives in approximately 25 minutes. On the basis of its ability to intercalate into low molecular weight dsDNA present in dilute cell lysates, and be electrophoresed through agarose, the fluorophore PicoGreen was selected for the development of a suitable dsDNA assay. It was assesseel for its accuracy, and reliability, In determining the concentration and identity of DNA present in samples that were eleclrophoresed through agarose gels. The signal emitted by intercalated PicoGreen was shown to be constant and linear, and that the mobility of the PicaGreen-DNA complex was not affected by the intercalation. Concerning the secondary purification procedure, various anion-exchange membranes were assessed for their ability to capture plasmid DNA from the post-EFD process stream. For a commercially available Sartorius Sartobind Q15 membrane, the reduction in the equilibriumbinding capacity for  ctDNA in buffer of increasing ionic demonstrated that DNA was being.adsorbed by electrostatic  interactions only. However, the problems associated with fluid distribution across the membrane demonstrated that the membrane housing was the predominant cause of the .erratic breakthrough curves. Consequently, this would need to be rectified before such a membrane could be integrated into the current system, or indeed be scaled beyond laboratory scale. However, when challenged with the process material, the data showed that considerable quantities of protein (1150 μg) were adsorbed preferentially to the plasmid DNA (44 μg). This was also shown for derived Pall Gelman UltraBind US450 membranes that had been functionalised by varying molecular weight poly-L~lysine and polyethyleneimine ligands. Hence the anion-exchange membranes were shown to be ineffective in capturing plasmid DNA from the process stream. Finally, work was performed to integrate a sequence-specific DNA·binding protein into a single-stage DNA chromatography, isolating plasmid DNA from E.coli cells whilst minimising the contamination from genomic DNA and cellular protein. Preliminary work demonstrated that the fusion protein was capable of isolating pUC19 DNA into which the recognition sequence for the fusion-protein had been inserted (pTS DNA) when in the presence of the conditioned process material. Althougth the pTS recognition sequence differs from native pUC19 sequences by only 2 bp, the fusion protein was shown to act as a highly selective affinity ligand for pTS DNA alone. Subsequently, the scale of the process was scaled 25-fold and positioned directly following the EFD system. In conclusion, the integration of the EFD micro-filtration system and zinc-finger affinity purification technique resulted in the capture of approximately 1 mg of plasmid DNA was purified from 1L of E.coli  culture in a simple two stage process, resulting in the complete removal of genomic DNA and 96.7% of cellular protein in less than 1 hour of process time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sensitive and precise radioimmunoassays for insulin and glucagon have been established. Although it was possible to employ similar precepts to the development of both hormone assays, the establishment of a reliable glucagon radioimmunoassay was complicated by the poor immunogenicity and instability of the peptide. Thus, unlike insulin antisera which were prepared by monthly injection of guinea pigs with crystalline insulin emulsified in adjuvant, the successful production of glucagon antisera was accomplished by immunisation of rabbits and guinea pigs with glucagon covalently linked to bovine plasma albumin. The conventional chloramine-T iodination with purification by gel chromatography was only suitable for the production of labelled insulin. Quality tracer for use in the glucagon radioimmunoassay was prepared by trace iodination, with subsequent purification of monoiodinated glucagon by anion exchange chromatography. Separation of free and antibody bound moieties by coated charcoal was applicable to both hormone assays, and a computerised data processing system, relying on logit-log transformation, was used to analyse all assay results. The assays were employed to evaluate the regulation of endocrine pancreatic function and the role of insulin and glucagon in the pathogenesis of the obese hyperglycaemic syndrome in mice. In the homozygous (ob/ob) condition, mice of the Birmingham strain were characterised by numerous abnormalities of glucose homeostasis, several of which were detected in heterozygous (ob/+) mice. Obese mice exhibited pancreatic alpha cell dysfunction and hyperglucagonaemia. Investigation of this defect revealed a marked insensitivity of an insulin dependent glucose sensing mechanism that inhibited glucagon secretion. Although circulating glucagon was of minor importance in the maintenance of hyperinsulinaemia, lack of suppression of alpha cell function by glucose and insulin contributed significantly to both the insulin insensitivity and the hyperglycaemia of obese mice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The transport of a group of quinolone antibiotics across the human intestinal model, Caco-2 cells, was investigated. It was found that the transport of the quinolones generally correlated with the lipophilicity of the compounds, indicating the passive diffusional transcellular processes were involved. However, it was observed that the transport in both directions apical-to-basolateral and basolateral-to-apical was not equivalent, and polarised transport occurred. For all the quinolones studied except, BMS-284756-01, it was found that the basolateral-to-apical transport was significantly greater than the apical-to-basolateral transport. This finding suggested that the quinolones underwent a process of active secretion. The pKas and logPs for the quinolones were determined using potentiometric titrations. The measured logP values were compared with those determined using theoretical methods. The theoretical methods for calculating logP including the Moriguchi method correlated poorly with the measured logP values. Further investigations revealed that there may be an active transporter involved in the apical-to-basolateral transport of quinolones as well. This mechanism was sensitive to competing quinolones, but, it was unaffected by the metabolic inhibitor combination of sodium azide (15mM) with 2-deoxy-D-glucose (50mM). The basolateral-to-apical transport of quinolones was found to be sensitive to inhibition by a number of different inhibitors. The metabolic inhibitors, sodium azide (15mM) with 2-deoxy-D-glucose (50mM) and 2,4-dinitrophenol (1mM), were able to reduce the basolateral-to-apical transport of quinolones. A reduction in temperature from 37°C to 2°C caused an 80-fold decrease in the transport of gatifloxacin in both directions, however, this effect was not sufficient to abolish the greater basolateral-to-apical secretion. As with apical-to-basolateral transport, it was found that quinolones competed with gatifloxacin for basolateral-to-apical transport, both ofloxacin (100μM) and norfloxacin (100μM) significantly (P<0.003) decreased the basolateral-to-apical transport of gatifloxacin; however, ciprofloxacin (100μM and 300μM) had no effect. A number of inhibitors of various transport systems were also investigated. It was found that the anion transport inhibitor, probenecid (100 μM) had a significant inhibitory effect on the basolateral-to-apical transport of ciprofloxacin (P=0.039), while the cation transport inhibitor cimetidine (100μM and 500μM) had no effect. The organic anion exchange inhibitor 4,4'diisothiocyanostilbene-2-2' -disulphonic acid DIDS (400μM) also had a significant inhibitory effect (P=O.O 13). The PgP inhibitor and anion exchange inhibitor verapamil (400Mμ) was able to completely abolish the basolateral-to-apical secretion of gatifloxacin and bring it into line with the apical-to-basolateral flux. In conclusion, the apical-to-basolateral and basolateral-toapical transport of quinolones involved an active component. The basolateral-to-apical secretion was abolished by a verapamil (400μM), a bisubstrate for PgP and the anion transporter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A two-step process of high ionic strength lysis of chicken erythrocyte cell nuclei followed by cation-exchange chromatography has separated at very high yield all the histone and HMGB (high-mobility group B) nuclear proteins, except the less-soluble histone tetramers. Surprisingly high yields of the nuclear immunophilin FKBP3 (FKBP25) and Hsp70 (heat-shock protein 70) co-fractionate with HMGB1 and HMGB3. Furthermore, these proteins can be separated by anion-exchange chromatography. The purified nuclear proteins retain their native, post-translational modification (PTM) marks, including those associated with chromatin-fibre remodelling. These marks are intimately associated with the control of the cell cycle. The methods herein are therefore of value for targeting these and other nuclear proteins for future proteomic studies in healthy and diseased cells. This journal is © 2012 The Royal Society of Chemistry.