7 resultados para animal precision production

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Emulsions and microcapsules are typical structures in various dispersion formulations for pharmaceutical, food, personal and house care applications. Precise control over size and size distribution of emulsion droplets and microcapsules are important for effective use and delivery of active components and better product quality. Many emulsification technologies have been developed to meet different formulation and processing requirements. Among them, membrane and microfluidic emulsification as emerging technologies have the feature of being able to precisely manufacture droplets in a drop-by-drop manner to give subscribed sizes and size distributions with lower energy consumption. This paper reviews fundamental sciences and engineering aspects of emulsification, membrane and microfluidic emulsification technologies and their use for precision manufacture of emulsions for intensified processing. Generic application examples are given for single and double emulsions and microcapsules with different structure features. © 2013 The Society of Powder Technology Japan. Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At present there is not a reliable vaccine against herpes virus. Viral protein vaccines as yet have proved unsuccessful to meet the challenge of raising an appropriate immune response. Cantab Pharmaceuticals has produced a virus vaccine that can undergo one round of replication in the recipient in order to produce a more specific immune reaction. This virus is called Disabled Infectious Single Cycle Herpes Simplex Virus (DISC HSV) which has been derived by deleting the essential gH gene from a type 2 herpes virus. This vaccine has been proven to be effective in animal studies. Existing methods for the purification of viruses rely on laboratory techniques and for vaccine production would be on a far too small a scale. There is therefore a need for new virus purification methods to be developed in order to meet these large scale needs. An integrated process for the manufacture of a purified recombinant DISC HSV is described. The process involves culture of complementing Vero (CR2) cells, virus infection and manufacture, virus harvesting and subsequent downstream processing. The identification of suitable growth parameters for the complementing cell line and optimal limes for both infection and harvest are addressed. Various traditional harvest methods were investigated and found not to be suitable for a scaled up process. A method of harvesting, that exploits the elution of cell associated viruses by the competitive binding of exogenous heparin to virus envelope gC proteins, is described and is shown to yield significantly less contaminated process streams than sonication or osmotic approaches that involve cell rupture (with> 10-fold less complementing cell protein). High concentrations of salt (>0.8M NaCl) exhibit the same effect, although the high osmotic strength ruptures cells and increase the contamination of the process stream. This same heparin-gC protein affinity interaction is also shown to provide an efficient adsorptive purification procedure for herpes viruses which avoids the need to pre-treat the harvest material, apart from clarification, prior to chromatography. Subsequent column eluates provide product fractions with a 100-fold increase in virus titre and low levels of complementing cell protein and DNA (0.05 pg protein/pfu and 1.2 x 104 pg DNA/pfu respectively).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodiesel is a renewable substitute fuel for petroleum diesel fuel which is made from nontoxic, biodegradable, renewable sources such as refined and used vegetable oils and animal fats. Biodiesel is produced by transesterification in which oil or fat is reacted with a monohydric alcohol in the presence of a catalyst. The process of transesterification is affected by the mode of reaction, molar ratio of alcohol to oil, type of alcohol, nature and amount of catalysts, reaction time, and temperature. Various studies have been carried out using different oils as the raw material and different alcohols (methanol, ethanol, butanol), as well as different catalysts, notably homogeneous ones such as sodium hydroxide, potassium hydroxide, sulfuric acid, and supercritical fluids or enzymes such as lipases. Recent research has focused on the application of heterogeneous catalysts to produce biodiesel, because of their environmental and economic advantages. This paper reviews the literature regarding both catalytic and noncatalytic production of biodiesel. Advantages and disadvantages of different methods and catalysts used are discussed. We also discuss the importance of developing a single catalyst for both esterification and transesterification reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The brewing industry produces large amounts of by-products and wastes like brewers' spent grain (BSG). In Germany, each year approximately 2.1 million tonnes of BSG are generated. During the last years conventional routes of BSG utilization face a remarkable change, such as the decline in the demand as animal feed. Due to its high content of organic matter energetic utilization may create an additional economic value for breweries. Furthermore, in the recent past breweries tend to shift their energy supply towards more sustainable concepts. Although, a decent number of research projects were carried out already, still no mature strategy is available. However, one possible solution can be the mechanical pretreatment of BSG. This step allows optimized energy utilization by the fractionation of BSG. Due to the transfer of digestible components, such as protein, to the liquid phase, the solid phase will largely consist of combustible components. That represents an opportunity to produce a solid biofuel with lower fuelnitrogen content compared to only thermal dried BSG. Therefore, two main purposes for the mechanical pre-treatment were determined, (1) to reduce the moisture content to at least 60 % (w/w) and (2) to diminish the protein content of the solid phase by 30 %. Moreover, the combustion trials should demonstrate whether stable processes and flue gas emissions within the legal limits in Germany are feasible. The results of the mechanical pre-treatment trials showed that a decrease of the moisture and protein content has been achieved. With regard to the combustion trials inconsistent outcomes were found. On the one hand a stable combustion was realized. On the other hand the legal emission levels of NOx (500 mgm -3) and dust (50 mgm-3) could not be kept during all trials. The further research steps will focus on the optimization of the air/fuel ratio by reducing the primary and secondary air conditions. Copyright © 2014,AIDIC Servizi S.r.l.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent changes to the legislation on chemicals and cosmetics testing call for a change in the paradigm regarding the current 'whole animal' approach for identifying chemical hazards, including the assessment of potential neurotoxins. Accordingly, since 2004, we have worked on the development of the integrated co-culture of post-mitotic, human-derived neurons and astrocytes (NT2.N/A), for use as an in vitro functional central nervous system (CNS) model. We have used it successfully to investigate indicators of neurotoxicity. For this purpose, we used NT2.N/A cells to examine the effects of acute exposure to a range of test chemicals on the cellular release of brain-derived neurotrophic factor (BDNF). It was demonstrated that the release of this protective neurotrophin into the culture medium (above that of control levels) occurred consistently in response to sub-cytotoxic levels of known neurotoxic, but not non-neurotoxic, chemicals. These increases in BDNF release were quantifiable, statistically significant, and occurred at concentrations below those at which cell death was measureable, which potentially indicates specific neurotoxicity, as opposed to general cytotoxicity. The fact that the BDNF immunoassay is non-invasive, and that NT2.N/A cells retain their functionality for a period of months, may make this system useful for repeated-dose toxicity testing, which is of particular relevance to cosmetics testing without the use of laboratory animals. In addition, the production of NT2.N/A cells without the use of animal products, such as fetal bovine serum, is being explored, to produce a fully-humanised cellular model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inorganic phosphate is an essential mineral for both prokaryotic and eukaryotic cell metabolism and structure. Its uptake into the cell is mediated by membrane bound transporters and coupled to Na+ transport. Mammalian sodium-dependent Pi co-transporters have been grouped into three families NaPi-I, NaPi-II, and NaPi-III. Despite being discovered more than 2 decades ago, very little is known about requirements for NaPi-III transporters in vivo, in the context of intact animal models. Here we find that impaired function of the C. elegans NaPi-III transporter, pitr-1, results in decreased brood size and dramatically increased expression of vitellogenin by the worm intestine. Unexpectedly, we found that the effects of pitr-1 mutation on vitellogenin expression in the intestine could only be rescued by expression of pitr-1 in the germline, and not by expression of pitr-1 in the intestine itself. Our results indicate the existence of a signal from the germline that regulates gene expression in the intestine, perhaps linking nutrient export from the intestine to production of gametes by the germline.