10 resultados para anatomical and physiological traits
em Aston University Research Archive
Resumo:
By addressing the vascular features that characterise myopia, this thesis aims to provide an understanding of the early structural changes associated with human myopia and the progression to co-morbidity with age. This thesis addresses three main areas of study: 1. Ocular perfusion features and autoregulatory mechanisms in human myopia; 2. Choroidal thickness at the macular area of myopic eyes; 3. Effect of chronic smoking on the ocular haemodynamics and autoregulation. This thesis demonstrated a reduced resting ocular pulse amplitude and retrobulbar blood flow in human myopia, associated with an apparent oversensitivity to the vasodilatory effects of hypercapnia, which may be due to anatomical differences in the volume of the vessel beds. In young smokers, normal resting state vascular characteristics were present; however there also appeared to be increased reactivity to hypercapnia, possibly due to relative chronic hypoxia. The systemic circulation in myopes and smokers over-reacted similarly to hypercapnia suggesting that physiologic differences are not confined to the eye. Age also showed a negative effect on autoregulatory capacity in otherwise normal eyes. Collectively, these findings suggest that myopes and smokers require greater autoregulatory capacity to maintain appropriate oxygenation of retinal tissue, and since the capacity for such regulation reduces with age, these groups are at greater risk of insufficient autoregulation and relative hypoxia with age.
Resumo:
The dramatic effects of brain damage can provide some of the most interesting insights into the nature of normal cognitive performance. In recent years a number of neuropsychological studies have reported a particular form of cognitive impairment where patients have problems recognising objects from one category but remain able to recognise those from others. The most frequent ‘category-specific’ pattern is an impairment identifying living things, compared to nonliving things. The reverse pattern of dissociation, i.e., an impairment recognising and naming nonliving things relative to living things, has been reported albeit much less frequently. The objective of the work carried out in this thesis was to investigate the organising principles and anatomical correlates of stored knowledge for categories of living and nonliving things. Three complementary cognitive neuropsychological research techniques were employed to assess how, and where, this knowledge is represented in the brain: (i) studies of normal (neurologically intact) subjects, (ii) case-studies of neurologically impaired patients with selective deficits in object recognition, and (iii) studies of the anatomical correlates of stored knowledge for living and nonliving things on the brain using magnetoencephalography (MEG). The main empirical findings showed that semantic knowledge about living and nonliving things is principally encoded in terms of sensory and functional features, respectively. In two case-study chapters evidence was found supporting the view that category-specific impairments can arise from damage to a pre-semantic system, rather than the assumption often made that the system involved must be semantic. In the MEG study, rather than finding evidence for the involvement of specific brain areas for different object categories, it appeared that, when subjects named and categorised living and nonliving things, a non-differentiated neural system was involved.
Resumo:
Elevated amyloid-β peptide (Aβ) and loss of nicotinic acetylcholine receptors (nAChRs) stand prominently in the etiology of Alzheimer's disease (AD). Since the discovery of an Aβ - nAChR interaction, much effort has been expended to characterize the consequences of high versus low concentrations of Aβ on nAChRs. This review will discuss current knowledge on the subject at the molecular, cellular, and physiological levels with particular emphasis on understanding how Aβ - nAChR interaction may contribute to normal physiological processes as well as the etiology of AD. ©2010 Bentham Science Publishers Ltd.
Resumo:
Background—The molecular mechanisms underlying similarities and differences between physiological and pathological left ventricular hypertrophy (LVH) are of intense interest. Most previous work involved targeted analysis of individual signaling pathways or screening of transcriptomic profiles. We developed a network biology approach using genomic and proteomic data to study the molecular patterns that distinguish pathological and physiological LVH. Methods and Results—A network-based analysis using graph theory methods was undertaken on 127 genome-wide expression arrays of in vivo murine LVH. This revealed phenotype-specific pathological and physiological gene coexpression networks. Despite >1650 common genes in the 2 networks, network structure is significantly different. This is largely because of rewiring of genes that are differentially coexpressed in the 2 networks; this novel concept of differential wiring was further validated experimentally. Functional analysis of the rewired network revealed several distinct cellular pathways and gene sets. Deeper exploration was undertaken by targeted proteomic analysis of mitochondrial, myofilament, and extracellular subproteomes in pathological LVH. A notable finding was that mRNA–protein correlation was greater at the cellular pathway level than for individual loci. Conclusions—This first combined gene network and proteomic analysis of LVH reveals novel insights into the integrated pathomechanisms that distinguish pathological versus physiological phenotypes. In particular, we identify differential gene wiring as a major distinguishing feature of these phenotypes. This approach provides a platform for the investigation of potentially novel pathways in LVH and offers a freely accessible protocol (http://sites.google.com/site/cardionetworks) for similar analyses in other cardiovascular diseases.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Reading and language abilities are heritable traits that are likely to share some genetic influences with each other. To identify pleiotropic genetic variants affecting these traits, we first performed a genome-wide association scan (GWAS) meta-analysis using three richly characterized datasets comprising individuals with histories of reading or language problems, and their siblings. GWAS was performed in a total of 1862 participants using the first principal component computed from several quantitative measures of reading- and language-related abilities, both before and after adjustment for performance IQ. We identified novel suggestive associations at the SNPs rs59197085 and rs5995177 (uncorrected P≈10 for each SNP), located respectively at the CCDC136/FLNC and RBFOX2 genes. Each of these SNPs then showed evidence for effects across multiple reading and language traits in univariate association testing against the individual traits. FLNC encodes a structural protein involved in cytoskeleton remodelling, while RBFOX2 is an important regulator of alternative splicing in neurons. The CCDC136/FLNC locus showed association with a comparable reading/language measure in an independent sample of 6434 participants from the general population, although involving distinct alleles of the associated SNP. Our datasets will form an important part of on-going international efforts to identify genes contributing to reading and language skills. Genome-wide association scan meta-analysis for reading and language ability. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Resumo:
The diagnosis and monitoring of ocular disease presents considerable clinical difficulties for two main reasons i) the substantial physiological variation of anatomical structure of the visual pathway and ii) constraints due to technical limitations of diagnostic hardware. These are further confounded by difficulties in detecting early loss or change in visual function due to the masking of disease effects, for example, due to a high degree of redundancy in terms of nerve fibre number along the visual pathway. This thesis addresses these issues across three areas of study: 1. Factors influencing retinal thickness measures and their clinical interpretation As the retina is the principal anatomical site for damage associated with visual loss, objective measures of retinal thickness and retinal nerve fibre layer thickness are key to the detection of pathology. In this thesis the ability of optical coherence tomography (OCT) to provide repeatable and reproducible measures of retinal structure at the macula and optic nerve head is investigated. In addition, the normal physiological variations in retinal thickness and retinal nerve fibre layer thickness are explored. Principal findings were: • Macular retinal thickness and optic nerve head measurements are repeatable and reproducible for normal subjects and diseased eyes • Macular and retinal nerve fibre layer thickness around the optic nerve correlate negatively with axial length, suggesting that larger eyes have thinner retinae, potentially making them more susceptible to damage or disease • Foveola retinal thickness increases with age while retinal nerve fibre layer thickness around the optic nerve head decreases with age. Such findings should be considered during examination of the eye with suspect pathology or in long-term disease monitoring 2. Impact of glucose control on retinal anatomy and function in diabetes Diabetes is a major health concern in the UK and worldwide and diabetic retinopathy is a major cause of blindness in the working population. Objective, quantitative measurements of retinal thickness. particularly at the macula provide essential information regarding disease progression and the efficacy of treatment. Functional vision loss in diabetic patients is commonly observed in clinical and experimental studies and is thought to be affected by blood glucose levels. In the first study of its kind, the short term impact of fluctuations in blood glucose levels on retinal structure and function over a 12 hour period in patients with diabetes are investigated. Principal findings were: • Acute fluctuations in blood glucose levels are greater in diabetic patients than normal subjects • The fluctuations in blood glucose levels impact contrast sensitivity scores. SWAP visual fields, intraocular pressure and diastolic pressure. This effect is similar for type 1 and type 2 diabetic patients despite the differences in their physiological status. • Long-term metabolic control in the diabetic patient is a useful predictor in the fluctuation of contrast sensitivity scores. • Large fluctuations in blood glucose levels and/or visual function and structure may be indicative of an increased risk of development or progression of retinopathy 3. Structural and functional damage of the visual pathway in glaucomatous optic neuropathy The glaucomatous eye undergoes a number of well documented pathological changes including retinal nerve fibre loss and optic nerve head damage which is correlated with loss of functional vision. In experimental glaucoma there is evidence that glaucomatous damage extends from retinal ganglion cells in the eye, along the visual pathway, to vision centres in the brain. This thesis explores the effects of glaucoma on retinal nerve fibre layer thickness, ocular anterior anatomy and cortical structure, and its correlates with visual function in humans. Principal findings were: • In the retina, glaucomatous retinal nerve fibre layer loss is less marked with increasing distance from the optic nerve head, suggesting that RNFL examination at a greater distance than traditionally employed may provide invaluable early indicators of glaucomatous damage • Neuroretinal rim area and retrobulbar optic nerve diameter are strong indicators of visual field loss • Grey matter density decreases at a rate of 3.85% per decade. There was no clear evidence of a disease effect • Cortical activation as measured by fMRI was a strong indicator of functional damage in patients with significant neuroretinal rim loss despite relatively modest visual field defects These investigations have shown that the effects of senescence are evident in both the anterior and posterior visual pathway. A variety of anatomical and functional diagnostic protocols for the investigation of damage to the visual pathway in ocular disease are required to maximise understanding of the disease processes and thereby optimising patient care.
Resumo:
The development of adult-onset diseases such as type II diabetes, obesity and cardiovascular disease is traditionally attributed to adult lifestyle characteristics such as a lack of physical exercise, poor diet and smoking. However, evidence from both human and animal model studies has demonstrated that environmental factors such as an imbalance or reduction in maternal nutrition during gestation can have adverse effects on offspring metabolism and cardiovascular health. The severity and nature of the phenotypic changes induced in offspring is influenced by the period of gestation manipulated. In particular, the mammalian preimplantation embryo in different animal models displays particular sensitivity to environmental factors, either in vivo (maternal diet) or in vitro (embryo culture) that is associated with the onset of cardiovascular dysfunction in adult life. The detailed mechanisms by which environmental conditions can alter postnatal cardiovascular physiology are poorly understood. However, various factors including endothelial function, vascular responsiveness, the renin-angiotensin system, kidney structure and early postnatal growth dynamics have all been recognize as potential contributors. Here, we review the relationship between preimplantation embryo environment and postnatal cardiovascular disease risk, and consider biochemical, molecular, genetic and physiological pathways implicated in this association. © 2009 The Authors Journal compilation © 2009 Anatomical Society of Great Britain and Ireland.